Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 434(2): 167355, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34774569

RESUMO

Human immunodeficiency virus (HIV) mutagenesis is driven by a variety of internal and external sources, including the host APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypetide-like 3; A3) family of mutagenesis factors, which catalyze G-to-A transition mutations during virus replication. HIV-2 replication is characterized by a relative lack of G-to-A mutations, suggesting infrequent mutagenesis by A3 proteins. To date, the activity of the A3 repertoire against HIV-2 has remained largely uncharacterized, and the mutagenic activity of these proteins against HIV-2 remains to be elucidated. In this study, we provide the first comprehensive characterization of the restrictive capacity of A3 proteins against HIV-2 in cell culture using a dual fluorescent reporter HIV-2 vector virus. We found that A3F, A3G, and A3H restricted HIV-2 infectivity in the absence of Vif and were associated with significant increases in the frequency of viral mutants. These proteins increased the frequency of G-to-A mutations within the proviruses of infected cells as well. A3G and A3H also reduced HIV-2 infectivity via inhibition of reverse transcription and the accumulation of DNA products during replication. In contrast, A3D did not exhibit any restrictive activity against HIV-2, even at higher expression levels. Taken together, these results provide evidence that A3F, A3G, and A3H, but not A3D, are capable of HIV-2 restriction. Differences in A3-mediated restriction of HIV-1 and HIV-2 may serve to provide new insights in the observed mutation profiles of these viruses.


Assuntos
Desaminase APOBEC-3G/metabolismo , Aminoidrolases/metabolismo , Citosina Desaminase/metabolismo , HIV-2 , Desaminase APOBEC-3G/genética , Aminoidrolases/genética , Citidina Desaminase/metabolismo , Citosina Desaminase/genética , Expressão Gênica , Infecções por HIV , HIV-2/genética , Humanos , Mutação , Replicação Viral
2.
Viruses ; 13(7)2021 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-34372543

RESUMO

Human immunodeficiency virus type 2 (HIV-2) accumulates fewer mutations during replication than HIV type 1 (HIV-1). Advanced studies of HIV-2 mutagenesis, however, have historically been confounded by high background error rates in traditional next-generation sequencing techniques. In this study, we describe the adaptation of the previously described maximum-depth sequencing (MDS) technique to studies of both HIV-1 and HIV-2 for the ultra-accurate characterization of viral mutagenesis. We also present the development of a user-friendly Galaxy workflow for the bioinformatic analyses of sequencing data generated using the MDS technique, designed to improve replicability and accessibility to molecular virologists. This adapted MDS technique and analysis pipeline were validated by comparisons with previously published analyses of the frequency and spectra of mutations in HIV-1 and HIV-2 and is readily expandable to studies of viral mutation across the genomes of both viruses. Using this novel sequencing pipeline, we observed that the background error rate was reduced 100-fold over standard Illumina error rates, and 10-fold over traditional unique molecular identifier (UMI)-based sequencing. This technical advancement will allow for the exploration of novel and previously unrecognized sources of viral mutagenesis in both HIV-1 and HIV-2, which will expand our understanding of retroviral diversity and evolution.


Assuntos
HIV-1/genética , HIV-2/genética , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , Análise Mutacional de DNA/métodos , Genoma Viral/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação/genética , Fluxo de Trabalho
3.
Viruses ; 9(10)2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934110

RESUMO

Current measles vaccines suffer from poor effectiveness in young infants due primarily to the inhibitory effect of residual maternal immunity on vaccine responses. The development of a measles vaccine that resists such passive immunity would strongly contribute to the stalled effort toward measles eradication. In this concise communication, we show that a measles virus (MV) with enhanced hemagglutinin (H) expression and incorporation, termed MVvac2-H2, retained its enhanced immunogenicity, previously established in older mice, when administered to very young, genetically modified, MV-susceptible mice in the presence of passive anti-measles immunity. This immunity level mimics the sub-neutralizing immunity prevalent in infants too young to be vaccinated. Additionally, toward a more physiological small animal model of maternal anti-measles immunity interference, we document vertical transfer of passive anti-MV immunity in genetically-modified, MV susceptible mice and show in this physiological model a better MVvac2-H2 immunogenic profile than that of the parental vaccine strain. In sum, these data support the notion that enhancing MV hemagglutinin incorporation can circumvent in vivo neutralization. This strategy merits additional exploration as an alternative pediatric measles vaccine.


Assuntos
Hemaglutininas Virais/imunologia , Imunidade Materno-Adquirida/imunologia , Imunogenicidade da Vacina/imunologia , Vacina contra Sarampo/imunologia , Vírus do Sarampo/imunologia , Sarampo/prevenção & controle , Fatores Etários , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Hemaglutininas Virais/genética , Humanos , Soros Imunes/imunologia , Fatores Imunológicos/imunologia , Lactente , Vacina contra Sarampo/genética , Camundongos , Modelos Animais , Vacinação , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Células Vero
4.
Plant Biotechnol J ; 15(12): 1590-1601, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28421694

RESUMO

In order to enhance vaccine uptake by the immune cells in vivo, molecular engineering approach was employed to construct a polymeric immunoglobulin G scaffold (PIGS) that incorporates multiple copies of an antigen and targets the Fc gamma receptors on antigen-presenting cells. These self-adjuvanting immunogens were tested in the context of dengue infection, for which there is currently no globally licensed vaccine yet. Thus, the consensus domain III sequence (cEDIII) of dengue glycoprotein E was incorporated into PIGS and expressed in both tobacco plants and Chinese Ovary Hamster cells. Purified mouse and human cEDIII-PIGS were fractionated by HPLC into low and high molecular weight forms, corresponding to monomers, dimers and polymers. cEDIII-PIGS were shown to retain important Fc receptor functions associated with immunoglobulins, including binding to C1q component of the complement and the low affinity Fcγ receptor II, as well as to macrophage cells in vitro. These molecules were shown to be immunogenic in mice, with or without an adjuvant, inducing a high level IgG antibody response which showed a neutralizing potential against the dengue virus serotype 2. The cEDIII-PIGS also induced a significant cellular immune response, IFN-γ production and polyfunctional T cells in both the CD4+ and CD8+ compartments. This proof-of-principle study shows that the potent antibody Fc-mediated cellular functions can be harnessed to improve vaccine design, underscoring the potential of this technology to induce and modulate a broad-ranging immune response.


Assuntos
Vacinas contra Dengue/farmacologia , Cadeias Pesadas de Imunoglobulinas/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/imunologia , Animais , Células CHO , Cricetulus , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Feminino , Regulação da Expressão Gênica de Plantas , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Testes de Neutralização , Plantas Geneticamente Modificadas/genética , Domínios Proteicos , Proteínas Recombinantes/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Nicotiana/genética
5.
J Virol ; 90(11): 5270-5279, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26984727

RESUMO

UNLABELLED: Imported measles virus (MV) outbreaks are maintained by poor vaccine responders and unvaccinated people. A convenient but more immunogenic vaccination strategy would enhance vaccine performance, contributing to measles eradication efforts. We report here the generation of alternative pediatric vaccines against MV with increased expression of the H protein in the background of the current MV vaccine strain. We generated two recombinants: MVvac2-H2, with increased full-length H expression resulting in a 3-fold increase in H incorporation into virions, and MVvac2-Hsol, vectoring a truncated, soluble form of the H protein that is secreted into the supernatants of infected cells. Replication fitness was conserved despite the duplication of the H cistron for both vectors. The modification to the envelope of MVvac2-H2 conferred upon this virus a measurable level of resistance to in vitro neutralization by MV polyclonal immune sera without altering its thermostability. Most interestingly, both recombinant MVs with enhanced H expression were significantly more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic after a single, human-range dose in genetically modified MV-susceptible mice. IMPORTANCE: Measles incidence was reduced drastically following the introduction of attenuated vaccines, but progress toward the eradication of this virus has stalled, and MV still threatens unvaccinated populations. Due to the contributions of primary vaccine failures and too-young-to-be-vaccinated infants to this problem, more immunogenic measles vaccines are highly desirable. We generated two experimental MV vaccines based on a current vaccine's genome but with enriched production of the H protein, the main MV antigen in provoking immunity. One vaccine incorporated H at higher rates in the viral envelope, and the other secreted a soluble H protein from infected cells. The increased expression of H by these vectors improved neutralizing responses induced in two small-animal models of MV immunogenicity. The enhanced immunogenicity of these vectors, mainly from the MV that incorporates additional H, suggests their value as potential alternative pediatric MV vaccines.


Assuntos
Hemaglutininas Virais/genética , Hemaglutininas Virais/imunologia , Imunogenicidade da Vacina , Vacina contra Sarampo/química , Vacina contra Sarampo/imunologia , Vírus do Sarampo/imunologia , Sarampo/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Humanos , Lactente , Interferon gama/sangue , Sarampo/imunologia , Sarampo/virologia , Vacina contra Sarampo/genética , Vírus do Sarampo/química , Vírus do Sarampo/genética , Camundongos , Testes de Neutralização , Vacinação , Vacinas Atenuadas/química , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
6.
Anat Rec (Hoboken) ; 295(10): 1596-608, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22753107

RESUMO

This study investigates the gross anatomy of the original and the regenerated tail in the green anole (Anolis carolinensis). Dissections were conducted on 24 original and 13 regenerated tails. While the extrinsic muscles of the original tail in A. carolinensis are similar to those in other known Anolis lizard species, the extent of the origins of m. caudofemoralis longus and m. caudofemoralis brevis is more restricted. These differences may underlie variation in locomotor performance among anole ecomorphs. The intrinsic muscles of the original tail are also described, confirming previous findings and documenting new details, including muscle origins and insertions and the range of intraspecific variation. A comparison of the intrinsic muscles of the original tail and the regenerated tail muscles reveals key differences, such as the lack of interdigitating muscle segments and intramuscular septa in the regenerated tail. These findings, along with the replacement of interlocking vertebrae with a stiff, cartilaginous rod, suggest that important functional differences exist between the original and regenerated tail. In particular, the regenerated tail is predicted to be less capable of coordinated, fine movements. Studies of the physical properties and range of motion of the original and regenerated tail are required to test this hypothesis. This atlas of tail anatomy in A. carolinensis represents a key resource for developmental and genetic studies of tail regeneration in lizards, as well as studies of anole evolution and biomechanics.


Assuntos
Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Cauda/anatomia & histologia , Cauda/fisiologia , Animais , Feminino , Lagartos/anatomia & histologia , Lagartos/fisiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...