Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079593

RESUMO

High temperature is foremost abiotic stress and there are inadequate studies explicating its impact on soybean. In this study, a pot experiment was done in a greenhouse maintained at a day/night temperature of 42/28 °C with a mean temperature of 35 °C to examine the effects of high temperature in soybean plants inoculated with and without arbuscular mycorrhizal fungi (AMF).Various parameters were taken in soybean plants treated with AMF (+) and AMF (-) such as growth analysis, chlorophyll content, canopy temperature, number of stomata, gas exchange, chlorophyll fluorescence, seed yield, and its attributes. It was observed that growth parameters like leaf area, stem height, root length, shoot and root dry biomass were increased in AMF (+) as compared to AMF (-) plants. Chlorophyll content, the number of stomata, photosynthesis rate, stomatal conductance, transpiration rate, and water use efficiency increased in AMF (+) as compared to AMF (-) plants. Chlorophyll fluorescence parameters such as Fv/Fm, Fv/Fo, PhiPSII, fluorescence area, performance index, photochemical quenching, linear electron transport rate, and active reaction centres density of PSII were also found to be enhanced in AMF (+) plants. However, canopy temperature, intercellular CO2, Fo/Fm, and non-photochemical quenching were higher in AMF (-) as compared to inoculated plants. An increase in growth and photosynthesis ultimately enhanced the seed yield and its attributes in AMF (+) as compared to AMF (-). Thus, AMF (+) plants have shown much better plant growth, photosynthesis parameters, and seed yield as compared to AMF (-) plants under high temperature. Thus, it is concluded that heat stress-induced damage to the structure and function of the photosynthetic apparatus was alleviated by AMF inoculum. Therefore, AMF can be used as a biofertilizer in alleviating the adverse effects of heat stress in soybean.

2.
Physiol Mol Biol Plants ; 25(3): 667-681, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31168231

RESUMO

Drought and heat stress are important abiotic stress restricting plant growth, while the two stresses often occur at the same time in nature and little is known about when these stresses occur in combination. Therefore, attempts were made to understand the impact of water stress imposed under different temperature conditions on photosynthesis, chlorophyll fluorescence, antioxidant enzymes, lipid peroxidation, chlorophyll, proline, free amino acid, epicuticular wax content and seed yield. Soybean genotype EC 538828 was grown under greenhouse conditions at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C. At each temperature, pots were divided into two sets, one set was unstressed while second was subjected to water stress at reproductive stage (beginning of seed fill). High temperature significantly declined the rate of photosynthesis, stomatal conductance, water use efficiency, Fv/Fm ratio, photochemical quenching, PhiPSII, electron transport rate, ascorbic acid, total free amino acids, chlorophyll content and seed yield. As against this with increase in temperature from 30/22 to 42/28 °C intercellular CO2, transpiration rate, vapor pressure deficit, non photochemical quenching, proline content, SOD, POD, APX, GR, MDA and epicuticular wax content were increased. Water stress when imposed at different temperature further aggravated the effects of temperature, and the combination of water stress and high temperature had more detrimental effect.

3.
Physiol Mol Biol Plants ; 25(3): 697-711, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31168233

RESUMO

In plant breeding programs, screening for drought-tolerance is often a bottleneck. An experiment was conducted in the field and rainout shelters to: (1) identify physiological traits in breeding programs that can be used as criteria for selecting drought tolerance soybean genotypes [Glycine max (L.) Merr], (2) evaluate genotypic differences to drought tolerance, and (3) identify genotypes with superior drought tolerance. Sixteen genotypes were evaluated in split plot design under irrigated and drought conditions. Various physiological traits were measured in irrigated and drought stressed plants such as canopy temperature, root length, specific leaf weight, photosynthetic rate, chlorophyll, and epicuticular wax content. As compared with irrigated conditions, the percent reduction in mean soybean yield under rainout shelter was 40%. The mean yields of soybean genotypes ranged from 1162 kg/ha (NRC 12) to 2610 kg/ha (JS 335) under irrigated conditions, whereas, under water stress conditions, yields ranged from 852 kg/ha (Samrat) to 1654 kg/ha (EC 538828). Genotypes EC 538828, JS 97-52, EC 456548, and EC 602288 had better avoidance to drought than other genotypes. The superior drought tolerance of the four genotypes was related to their low canopy temperature, deep root system, and high values for root/shoot weight ratio, specific leaf weight, chlorophyll content, photosynthetic rate, epicuticular wax content, and Photosystem II (PSII) efficiency. Therefore, when genetic diversity of these physiological traits is established in breeding programs, these traits can be used as a selection criterion for selecting drought tolerant genotypes.

4.
Physiol Mol Biol Plants ; 24(1): 37-50, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29398837

RESUMO

Elevated temperature and water deficit are the major abiotic factors restricting plant growth. While in nature these two stresses often occur at the same time; little is known about their combined effect on plants. Therefore, the main objective of the current study was to observe the effect of these two stresses on phenology, dry matter and seed yield in soybean. Two soybean genotypes JS 97-52 and EC 538828 were grown under green-house conditions which were maintained at different day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively. At each temperature, pots were divided into three sets, one set was unstressed while second and third set were subjected to water stress at vegetative and reproductive stage, respectively. As compared to 30/22 °C increase in temperature to 34/24 °C caused a marginal decline in leaf area, seed weight, total biomass, pods/pl, seeds/pl, harvest index, seeds/pod and 100 seed weight. The decline was of higher magnitude at 38/26 and 42/28 °C. Water stress imposed at two growth stages also significantly affected dry matter and yield. The highest average seed yield (10.9 g/pl) was observed at 30/22 °C, which was significantly reduced by 19, 42 and 64% at 34/24, 38/24 and 42/28 °C, respectively. Similarly, compared to unstressed plants (11.3 g/pl) there was 28 and 74% reduction in yield in plants stressed at vegetative and reproductive stage. Thus, both temperature and water stress affected the growth and yield but the effect was more severe when water stress was imposed at higher temperatures. JS 97-52 was more affected by temperature and water stress as compared to EC 538828. Though drought is the only abiotic factor that is known to affect the water status of plants, but the severity of the effect is highly dependent on prevailing temperature.

5.
Photosynth Res ; 131(3): 333-350, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28025729

RESUMO

High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.


Assuntos
Clorofila/metabolismo , Glycine max/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...