Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998144

RESUMO

This article presents a study of metamaterial structures that exhibit auxetic properties. This unusual phenomenon of simultaneous orthogonal expansion of the metamaterial in tension, and vice versa in compression, with vertical and horizontal contraction, is explored for structures made of re-entrant unit cells. The geometry of such structures is analysed in detail, and the relationships are determined by the value of the Poisson's ratio. It is shown that the Poisson's ratio depends not only on the geometry of the unit cell but also on the degree of strain. Depending on the dimensions of the structure's horizontal and inclined struts, the limit values are determined for the angle between them. By creating physical structures made of re-entrant cells, it is demonstrated that the mechanism of change in the structure's dimensions is not due to the hinging but to the bending of the struts. The experimental section contains the results of compression tests of a symmetrical structure and tensile tests of a flat mesh structure. In the case of the mesh structure, a modification of the re-entrant cells was used to create arched strut joints. This modification makes it possible to obtain greater elongation of the mesh structure and larger NPR values.

2.
Materials (Basel) ; 17(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38592007

RESUMO

The subject of the work is analysis, which presents a renowned auxetic structure based on so-called rotating polygons, which has been subject to modification. This modification entails introducing pivot points on unit cell surfaces near rectangle corners. This innovative system reveals previously unexplored correlations between Poisson's ratio, the ratio of rectangle side lengths, pivot point placement, and structural opening. Formulas have been derived using geometric relationships to compute the structure's linear dimensions and Poisson's ratio. The obtained findings suggest that Poisson's ratio is intricately tied to the structure's opening degree, varying as the structure undergoes stretching. Notably, there are critical parameter limits beyond which Poisson's ratio turns positive, leading to the loss of auxetic properties. For elongated rectangles, extremely high negative Poisson's ratio values are obtained, but only for small opening angles, while with further stretching, the structure loses its auxetic properties. This observed trend is consistent across a broad category of structures comprised of rotating rectangles.

3.
Materials (Basel) ; 16(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570010

RESUMO

The paper presents an analysis of rotating rigid unit (RRU) auxetic structures, the special property of which is negative Poisson's ratio. The crucial features of such modified structures are the well-functioning linkages of the square units at their pivot points. This ensures the stable functioning of such structures in tension or compression. The presented geometrical analysis of these auxetic structures may facilitate their adequate construction and allow one to determine the expected values of their expansion as well as the desired porosity. The results are confirmed based on the behaviour of physical models produced by the assembly of square units. The change in the dimensions of the physical models when moving from a closed to an open position is consistent with the predictions of the geometric models. By modifying the well-known 'rotating squares' model, physical structures with auxetic properties are obtained that can be utilised in industrial conditions, where a simultaneous change of linear dimensions is needed-either in compression or in tension. The assembly method may prove efficient in building such structures, given the abilities of assembly robots to regularly arrange the unit cells in lines and rows and to connect them with rings at the designated positions (evenly spaced perforations). The presented auxetic structures might find their potential application in, e.g., expansion joints or structures in which the porosity is mechanically changed, such as mesoscale structures. The tested structures subjected to high compressive forces buckle when the yield strength of the rigid unit material is exceeded.

4.
Materials (Basel) ; 14(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34832143

RESUMO

This paper presents the results of tests conducted on the HR6W (23Cr-45Ni-6W-Nb-Ti-B) alloy under low-cycle fatigue at room temperature and at 650 °C. Fatigue tests were carried out at constant values of the total strain ranges. The alloy under low-cycle fatigue showed cyclic strengthening both at room temperature and at 650 °C. The degree of HR6W strengthening described by coefficient n' was higher at higher temperatures. At the same time, its fatigue life Nf at room temperature was, depending on the range of total strain adopted in the tests, several times higher than observed at 650 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...