Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Monit ; 30: e943706, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500254

RESUMO

BACKGROUND The advent of digital impressions using computer-aided design and manufacturing technology (CAD/CAM) has simplified and improved the fabrication of implant prostheses in dentistry. The conventional impression has several drawbacks, including tray selection, material type, impression technique, impression disinfection, and cast model storage. The inaccuracies caused by distortion and contraction of impression material can be minimized with digital impressions. This study aimed to compare digital dental impressions of 10 working casts made using the Pindex laser removable die system to fabricate parallel drill channels vs 10 working casts made using the Di-Lok plastic tray removable die system. MATERIAL AND METHODS An implant master die with 2 dental implant analogs was fabricated. Ten working casts using the Pindex laser removable die system with parallel drill channels and 10 working casts using the Di-Lok plastic tray removable die system were fabricated. The working casts were scanned using an extra-oral laboratory scanner and the implant master model was scanned with an intra-oral scanner. RESULTS The properties of the casts made using the 2 systems were evaluated and analyzed with ANOVA and post hoc Tukey test. The mean horizontal linear distances between A1B1 (P<0.021), A2B2 (P<0.018), C1D1 (P<0.026), C2D2 (P<0.03), B1C1 (P<0.01), and mean vertical distances between B1A2 (P<0.015), C1D2 (P<0.001), B1B2 (P<0.028), and C1C2 (P<0.001) were significantly different between the Pindex system and Di-Lok tray system as compared to intra-oral scans. CONCLUSIONS Complete digital workflow with intra-oral scans were more than the partial digital workflow with extra-oral scans for the Pindex system and Di-Lok tray systems.


Assuntos
Implantes Dentários , Modelos Dentários , Fluxo de Trabalho , Desenho Assistido por Computador , Prótese Parcial Fixa , Projetos de Pesquisa
2.
Polymers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959963

RESUMO

The aim of this study was to assess the shear bond strength of 3D-printed and milled provisional restorations using various resin materials and surface finishes. There were 160 preliminary samples in all, and they were split into two groups: the milled group and the 3D-printed group. Based on the resin used for repair (composite or polymethylmethacrylate (PMMA)) and the type of surface treatment utilized (chemical or mechanical), each group was further divided into subgroups. The specimens were subjected to thermocycling from 5 °C to 55 °C for up to 5000 thermal cycles with a dwell time of 30 s. The mechanical qualities of the repaired material underwent testing for shear bond strength (SBS). To identify the significant differences between the groups and subgroups, a statistical analysis was carried out. Three-way ANOVA was used to analyze the effects of each independent component (the material and the bonding condition), as well as the interaction between the independent factors on shear bond strength. Tukey multiple post-hoc tests were used to compare the mean results for each material under various bonding circumstances. The shear bond strengths of the various groups and subgroups differed significantly (p < 0.05). When compared to the milled group, the 3D-printed group had a much greater mean shear bond strength. When compared to PMMA repair, the composite resin material showed a noticeably greater shear bond strength. In terms of surface treatments, the samples with mechanical and chemical surface treatments had stronger shear bonds than those that had not received any. The results of this study demonstrate the effect of the fabrication method, resin type, and surface treatment on the shear bond strength of restored provisional restorations. Particularly when made using composite material and given surface treatments, 3D-printed provisional restorations showed exceptional mechanical qualities. These results can help dentists choose the best fabrication methods, resin materials, and surface treatments through which to increase the durability and bond strength of temporary prosthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...