Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(40): 37302-37308, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841117

RESUMO

Low-field nuclear magnetic resonance (NMR) spectroscopy, conducted at or below a few millitesla, provides only limited spectral information due to its inability to resolve chemical shifts. Thus, chemical analysis based on this technique remains challenging. One potential solution to overcome this limitation is the use of isotopically labeled molecules. However, such compounds, particularly their use in two-dimensional (2D) NMR techniques, have rarely been studied. This study presents the results of both experimental and simulated correlation spectroscopy (COSY) on 1-13C-ethanol at 34.38 µT. The strong heteronuclear coupling in this molecule breaks the magnetic equivalence, causing all J-couplings, including homonuclear coupling, to split the 1H spectrum. The obtained COSY spectrum clearly shows the spectral details. Furthermore, we observed that homonuclear coupling between 1H spins generated cross-peaks only when the associated 1H spins were coupled to identical 13C spin states. Our findings demonstrate that a low-field 2D spectrum, even with a moderate spectral line width, can reveal the J-coupling networks of isotopically labeled molecules.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37877789

RESUMO

Diverse strategies have been developed to visualize latent fingerprints (LFPs) that are undetectable by the naked eye. Among them, fluorescence-based approaches have emerged as an attractive method for enabling high-resolution LFP imaging. However, the use of fluorescent probes for LFP detection remains challenging due to cumbersome processing, low selectivity, and high background interference. Here, we demonstrate highly efficient, sensitive, and background-free LFP detection with dual-color emission arising from manganese (Mn)-doped lead halide perovskite (CsPb(Cl1-yBry)3) nanocrystals (NCs). The resulting bright, fluorescent, solid-state nanopowder (NP) permits the visualization of LFP ridge structures and the resolution of level 1-3 LFP features. The dual-color emission of the Mn-doped perovskite NP provides a simple, robust, and effective route to overcome background interference, thereby increasing the resolution and sensitivity of the LFP detection. The combination of the high quantum efficiency and dual emission of Mn-doped perovskite NP offers great potential for forensic science.

3.
ACS Appl Mater Interfaces ; 15(28): 33425-33436, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37341540

RESUMO

Fluorescent nanodiamonds (FNDs) are versatile nanomaterials with promising properties. However, efficient functionalization of FNDs for biomedical applications remains challenging. In this study, we demonstrate mesoporous polydopamine (mPDA) encapsulation of FNDs. The mPDA shell is generated by sequential formation of micelles via self-assembly of Pluronic F127 (F127) with 1,3,5-trimethyl benzene (TMB) and composite micelles via oxidation and self-polymerization of dopamine hydrochloride (DA). The surface of the mPDA shell can be readily functionalized with thiol-terminated methoxy polyethylene glycol (mPEG-SH), hyperbranched polyglycerol (HPG), and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). The PEGylated FND@mPDA particles are efficiently taken up by, and employed as a fluorescent imaging probe for, HeLa cells. HPG-functionalized FND@mPDA is conjugated with an amino-terminated oligonucleotide to detect microRNA via hybridization. Finally, the increased surface area of the mPDA shell permits efficient loading of doxorubicin hydrochloride. Further modification with TPGS increases drug delivery efficiency, resulting in high toxicity to cancer cells.


Assuntos
Nanodiamantes , Humanos , Micelas , Células HeLa , Corantes Fluorescentes
4.
Molecules ; 27(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35164002

RESUMO

Carboxylic acid is a commonly utilized functional group for covalent surface conjugation of carbon nanoparticles that is typically generated by acid oxidation. However, acid oxidation generates additional oxygen containing groups, including epoxides, ketones, aldehydes, lactones, and alcohols. We present a method to specifically enrich the carboxylic acid content on fluorescent nanodiamond (FND) surfaces. Lithium aluminum hydride is used to reduce oxygen containing surface groups to alcohols. The alcohols are then converted to carboxylic acids through a rhodium (II) acetate catalyzed carbene insertion reaction with tert-butyl diazoacetate and subsequent ester cleavage with trifluoroacetic acid. This carboxylic acid enrichment process significantly enhanced nanodiamond homogeneity and improved the efficiency of functionalizing the FND surface. Biotin functionalized fluorescent nanodiamonds were demonstrated to be robust and stable single-molecule fluorescence and optical trapping probes.

5.
Anal Chim Acta ; 1181: 338850, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556215

RESUMO

Latent fingerprints (LFPs) are one of the most important forms of evidence in crime scenes due to the uniqueness and permanence of the friction ridges in fingerprints. Therefore, an efficient method to detect LFPs is crucial in forensic science. However, there remain several challenges with traditional detection strategies including low sensitivity, low contrast, high background, and complicated processing steps. In order to overcome these drawbacks, we present an approach for developing latent fingerprints using stabilized CsPbBr3 perovskite nanocrystals (NCs) as solid-state nanopowders. We demonstrate the superior optical stability of CsPbBr3 NCs with respect to absorption, photoluminescence (PL), and fluorescence lifetime. We then used these highly stable, fluorescent CsPbBr3 NCs as a powder dusting material to develop LFPs on diverse surfaces. The stable optical properties and hydrophobic surface of the CsPbBr3 NC nanopowder permitted high resolution images from which unique features of friction ridge arrangements with first, second, and third-level LFP details can be obtained within minutes.


Assuntos
Brometos , Nanopartículas , Compostos de Cálcio , Césio , Chumbo , Óxidos , Titânio
6.
Nanomaterials (Basel) ; 11(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435443

RESUMO

Fluorescent nanodiamonds (FNDs) are a new class of carbon nanomaterials that offer great promise for biological applications such as cell labeling, imaging, and sensing due to their exceptional optical properties and biocompatibility. Implementation of these applications requires reliable and precise surface functionalization. Although diamonds are generally considered inert, they typically possess diverse surface groups that permit a range of different functionalization strategies. This review provides an overview of nanodiamond surface functionalization methods including homogeneous surface termination approaches (hydrogenation, halogenation, amination, oxidation, and reduction), in addition to covalent and non-covalent surface modification with different functional moieties. Furthermore, the subsequent coupling of biomolecules onto functionalized nanodiamonds is reviewed. Finally, biomedical applications of nanodiamonds are discussed in the context of functionalization.

7.
ACS Appl Mater Interfaces ; 12(5): 6641-6650, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31939655

RESUMO

There is an immense literature on detection of latent fingerprints (LFPs) with fluorescent nanomaterials because fluorescence is one of the most sensitive detection methods. Although many fluorescent probes have been developed for latent fingerprint detection, many challenges remain, including the low selectivity, complicated processing, high background, and toxicity of nanoparticles used to visualize LFPs. In this study, we demonstrate biocompatible, efficient, and low background LFP detection with poly(vinylpyrrolidone) (PVP) coated fluorescent nanodiamonds (FNDs). PVP-coated FND (FND@PVP) is biocompatible at the cellular level. They neither inhibit cellar proliferation nor induce cell death via apoptosis or other cell killing pathways. Moreover, they do not elicit an immune response in cells. PVP coating enhances the physical adhesion of FND to diverse substrates and in particular results in efficient binding of FND@PVP to fingerprint ridges due to the intrinsic amphiphilicity of PVP. Clear, well-defined ridge structures with first, second, and third-level of LFP details are revealed within minutes by FND@PVP. The combination of this binding specificity and the remarkable optical properties of FND@PVP permits the detection of LPFs with high contrast, efficiency, selectivity, sensitivity, and reduced background interference. Our results demonstrate that background-free imaging via multicolor emission and dual-modal imaging of FND@PVP nanoparticles have great potential for high-resolution imaging of LFPs.

8.
Adv Funct Mater ; 28(33)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30686957

RESUMO

Fluorescent nanodiamonds (FNDs) are promising bio-imaging probes compared with other fluorescent nanomaterials such as quantum dots, dye-doped nanoparticles, and metallic nanoclusters, due to their remarkable optical properties and excellent biocompatibility. Nevertheless, they are prone to aggregation in physiological salt solutions, and modifying their surface to conjugate biologically active agents remains challenging. Here, inspired by the adhesive protein of marine mussels, we demonstrate encapsulation of FNDs within a polydopamine (PDA) shell. These PDA surfaces are readily modified via Michael addition or Schiff base reactions with molecules presenting thiol or nitrogen derivatives. We describe modification of PDA shells by thiol terminated poly(ethylene glycol) (PEG-SH) molecules to enhance colloidal stability and biocompatibility of FNDs. We demonstrate their use as fluorescent probes for cell imaging; we find that PEGylated FNDs are taken up by HeLa cells and mouse bone marrow-derived dendritic cells and exhibit reduced nonspecific membrane adhesion. Furthermore, we demonstrate functionalization with biotin-PEG-SH and perform long-term high-resolution single-molecule fluorescence based tracking measurements of FNDs tethered via streptavidin to individual biotinylated DNA molecules. Our robust polydopamine encapsulation and functionalization strategy presents a facile route to develop FNDs as multifunctional labels, drug delivery vehicles, and targeting agents for biomedical applications.

9.
Langmuir ; 33(45): 13040-13050, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29061048

RESUMO

Recently, quantum dots (QDs) have been successfully developed as efficient color converters for light-emitting diodes (LEDs) display due to excellent optical properties of QDs. Herein, we demonstrate a new approach to form metal oxide layers (or metal oxide coating) on the exterior surface of gradient alloy QDs (the most advanced chemical architecture QDs developed thus far wherein the lattice parameter from the core to shell is changing in a gradient fashion) in order to improve the photochemical stability and photoluminescence efficiency. The resulting CdO-treated QDs are incorporated into polymer matrix films to fabricate a backlight unit as a part of display panel wherein CdO-treated gradient alloy QDs are utilized as color converters upon the blue-LED excitation. The fabricated 9.7 in. iPad 2 tablet liquid crystal display panel exhibited an excellent uniformity in terms of CIE chromaticity, luminance, and bright variation and superb durability test results (maintenance of ca. 110% brightness compared to initial value even after 3 weeks of operation).

10.
Langmuir ; 33(15): 3711-3719, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28363020

RESUMO

Highly efficient blue-emitting CdSe-derived core/shell gradient alloy quantum dots (CSGA QDs) with photoluminescence quantum yield (PL QY) of ca. 90% have been synthesized through a facile "one-pot" approach. CdSe nuclei are initially formed as core and gradient alloy shells such as CdSexS1-x/ZnSeyS1-y simultaneously encapsulate the preformed CdSe core in an energy-gradient fashion eventually followed by coating with ZnS shells due to the faster precursor reaction kinetics of Cd and Se compared to analog of Zn and S. During the formation of core/shell structure, red-shifting of absorption/emission peaks followed by blue-shifting of analogues were observed due to the intradiffusion of sulfur anion to CdSe luminescent center. In this gradient architecture, interfacial lattice strain can be effectively alleviated, and thus high PL QY (ca. 90%) and enhanced photochemical stability can be achieved. The synthesized blue-emitting gradient alloy QDs with superior optical properties tunable in the range of 450-490 nm can be used for highly efficient blue-emitters and potentially applicable for the fabrication of white-light LEDs.

11.
Langmuir ; 32(32): 8077-83, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27452188

RESUMO

Fluorescent silica nanoparticles (FSNPs) are synthesized through the Stöber method by incorporating silane-modified organic dye molecules. The modified fluorescent organic dye molecule is able to be prepared by allylation and hydrosilylation reactions. The optical properties of as-prepared FSNPs are shown the similar optical properties of PR254A (allylated Pigment Red 254) and have outstanding photostability. The polyvinylpyrrolidone (PVP) is introduced onto the surface of FSNP to enhance the binding affinity of PVP-coated FSNP for latent fingerprints (LFPs) detection. The simple preparation and easy control of surface properties of FSNPs show potential as a fluorescent labeling material for enhanced latent fingerprint detection on hydrophilic and hydrophobic substrates in forensic science for individual identification.

12.
Chem Commun (Camb) ; 50(62): 8547-9, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-24955440

RESUMO

Here, we report a method for high-sensitivity fluorescence imaging of iron, which demonstrates the abundance and distribution of iron in plant tissues more precisely than conventional histochemical staining procedures. The fluorescence turn-on method is rapid (<20 min), inexpensive to set up, and expected to be readily applicable to any plant tissues.


Assuntos
Arabidopsis/química , Corantes Fluorescentes , Ferro/análise , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos
13.
ACS Nano ; 6(9): 7665-80, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22830605

RESUMO

Magnetic nanoparticles (MNPs) have proven themselves to be useful in biomedical research; however, previous reports were insufficient to address the potential dangers of nanoparticles. Here, we investigated gene expression and metabolic changes based on the microarray and gas chromatography-mass spectrometry with human embryo kidney 293 cells treated with MNPs@SiO(2)(RITC), a silica-coated MNP containing Rhodamine B isothiocyanate (RITC). In addition, measurement of reactive oxygen species (ROS) and ATP analysis were performed to evaluate the effect of MNPs@SiO(2)(RITC) on mitochondrial function. Compared to the nontreated control, glutamic acid was increased by more than 2.0-fold, and expression of genes related to the glutamic acid metabolic pathway was also disturbed in 1.0 µg/µL of MNPs@SiO(2)(RITC)-treated cells. Furthermore, increases in ROS concentration and mitochondrial damage were observed in this MNPs@SiO(2)(RITC) concentration. The organic acids related to the Krebs cycle were also disturbed, and the capacity of ATP synthesis was decreased in cell treated with an overdose of MNPs@SiO(2)(RITC). Collectively, these results suggest that overdose (1.0 µg/µL) of MNPs caused transcriptomic and metabolic disturbance. In addition, we suggest that a combination of gene expression and metabolic profiles will provide more detailed and sensitive toxicological evaluation for nanoparticles.


Assuntos
Materiais Revestidos Biocompatíveis/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Nanopartículas de Magnetita/administração & dosagem , Metaboloma/fisiologia , Proteoma/metabolismo , Dióxido de Silício/administração & dosagem , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...