Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(9): e0189321, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35938799

RESUMO

Prothionamide, a second-line drug for multidrug-resistant tuberculosis (MDR-TB), has been in use for a few decades. However, its pharmacokinetic (PK) profile remains unclear. This study aimed to develop a population PK model for prothionamide and then apply the model to determine the optimal dosing regimen for MDR-TB patients. Multiple plasma samples were collected from 27 MDR-TB patients who had been treated with prothionamide at 2 different study hospitals. Prothionamide was administered according to the weight-band dose regimen (500 mg/day for weight <50 kg and 750 mg/day for weight >50 kg) recommended by the World Health Organization. The population PK model was developed using nonlinear mixed-effects modeling. The probability of target attainment, based on systemic exposure and MIC, was used as a response target. Fixed-dose regimens (500 or 750 mg/day) were simulated to compare the efficacies of various dosing regimens. PK profiles adequately described the two-compartment model with first-order elimination and the transit absorption compartment model with allometric scaling on clearance. All dosing regimens had effectiveness >90% for MIC values <0.4 µg/mL in 1.0-log kill target. However, a fixed dose of 750 mg/day was the only regimen that achieved the target resistance suppression of ≥90% for MIC values of <0.2 µg/mL. In conclusion, fixed-dose prothionamide (750 mg/day), regardless of weight-band, was appropriate for adult MDR-TB patients with weights of 40 to 67 kg.


Assuntos
Protionamida , Tuberculose Resistente a Múltiplos Medicamentos , Adulto , Antituberculosos/efeitos adversos , Humanos , Protionamida/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
2.
Pharmaceutics ; 14(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35213976

RESUMO

Donepezil patch was developed to replace the original oral formulation. To accurately describe the pharmacokinetics of donepezil and investigate compatible doses between two formulations, a population pharmacokinetic model for oral and transdermal patches was built based on a clinical study. Plasma donepezil levels were analyzed via liquid chromatography/tandem mass spectrometry. Non-compartmental analyses were performed to derive the initial parameters for compartmental analyses. Compartmental analysis (CA) was performed with NLME software NONMEM assisted by Perl-speaks-NONMEM, and R. Model evaluation was proceeded via visual predictive checks (VPC), goodness-of-fit (GOF) plotting, and bootstrap method. The bioequivalence test was based on a 2 × 2 crossover design, and parameters of AUC and Cmax were considered. We found that a two-compartment model featuring two transit compartments accurately describes the pharmacokinetics of nine subjects administered in oral, as well as of the patch-dosed subjects. Through evaluation, the model was proven to be sufficiently accurate and suitable for further bioequivalence tests. Based on the bioequivalence test, 114 mg/101.3 cm2-146 mg/129.8 cm2 of donepezil patch per week was equivalent to 10 mg PO donepezil per day. In conclusion, the pharmacokinetic model was successfully developed, and acceptable parameters were estimated. However, the size calculated by an equivalent dose of donepezil patch could be rather large. Further optimization in formulation needs to be performed to find appropriate usability in clinical situations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...