Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(30)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34290086

RESUMO

Unsupported Pt electrocatalysts demonstrate excellent electrochemical stability when used in polymer electrolyte membrane fuel cells; however, their extreme thinness and low porosity result in insufficient surface area and high mass transfer resistance. Here, we introduce three-dimensionally (3D) customized, multiscale Pt nanoarchitectures (PtNAs) composed of dense and narrow (for sufficient active sites) and sparse (for improved mass transfer) nanoscale building blocks. The 3D-multiscale PtNA fabricated by ultrahigh-resolution nanotransfer printing exhibited excellent performance (45% enhanced maximum power density) and high durability (only 5% loss of surface area for 5000 cycles) compared to commercial Pt/C. We also theoretically elucidate the relationship between the 3D structures and cell performance using computational fluid dynamics. We expect that the structure-controlled 3D electrocatalysts will introduce a new pathway to design and fabricate high-performance electrocatalysts for fuel cells, as well as various electrochemical devices that require the precision engineering of reaction surfaces and mass transfer.

2.
J Nanosci Nanotechnol ; 12(7): 5412-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966581

RESUMO

In this study, carbon nanofiber (CNF) was used as a support in which 47.5 wt% Pt/CNFs catalyst was prepared by a modified polyol method. The platinum particle size and dispersion on the CNFs are approximately 2-4 nm as determined by X-ray diffractometry and transmission electron microscopy. The specific surface area was approximated as 55.90 m2/g by BET analysis. Electrodes were prepared by the spray method and have a size of 5 cm2. A commercial catalyst (TKK, 46 wt% Pt/C) was used as the anode and the cathode was Pt/CNFs. Different amounts of Nafion ionomer (Aldrich, 5 wt% solution, in the range of 0-20 wt%) were coated on a membrane (Dupont, Nafion 212) with 0.4 mg/cm2 of Pt catalyst at the cathode side. The resulting polarization, ohmic and mass transfer resistances changed significantly based on the Nafion ionomer content. Optimum Nafion ionomer content in the 47.5 wt% Pt/CNFs was 5 wt%. The well-dispersed Nafion ionomer was observed on the catalyst surface area using SEM-EDAX analysis. A sufficient triple-phase boundary was formed by a small amount of Nation ionomer due to the BET surface area of the Pt/CNFs.

3.
Nanoscale Res Lett ; 7(1): 34, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22221426

RESUMO

In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA