Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Res ; 57(1): 25, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720397

RESUMO

PURPOSE: Prostate cancer (PCa) is a major urological disease that is associated with significant morbidity and mortality in men. LLGL2 is the mammalian homolog of Lgl. It acts as a tumor suppressor in breast and hepatic cancer. However, the role of LLGL2 and the underlying mechanisms in PCa have not yet been elucidated. Here, we investigate the role of LLGL2 in the regulation of epithelial-mesenchymal transition (EMT) in PCa through autophagy in vitro and in vivo. METHODS: PC3 cells were transfected with siLLGL2 or plasmid LLGL2 and autophagy was examined. Invasion, migration, and wound healing were assessed in PC3 cells under autophagy regulation. Tumor growth was evaluated using a shLLGL2 xenograft mouse model. RESULTS: In patients with PCa, LLGL2 levels were higher with defective autophagy and increased EMT. Our results showed that the knockdown of LLGL2 induced autophagy flux by upregulating Vps34 and ATG14L. LLGL2 knockdown inhibits EMT by upregulating E-cadherin and downregulating fibronectin and α-SMA. The pharmacological activation of autophagy by rapamycin suppressed EMT, and these effects were reversed by 3-methyladenine treatment. Interestingly, in a shLLGL2 xenograft mouse model, tumor size and EMT were decreased, which were improved by autophagy induction and worsened by autophagy inhibition. CONCLUSION: Defective expression of LLGL2 leads to attenuation of EMT due to the upregulation of autophagy flux in PCa. Our results suggest that LLGL2 is a novel target for alleviating PCa via the regulation of autophagy.


Assuntos
Autofagia , Transição Epitelial-Mesenquimal , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Autofagia/fisiologia , Autofagia/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Inativação Gênica , Camundongos Nus , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Plant Physiol Biochem ; 206: 108308, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38169224

RESUMO

Seed longevity is a critical characteristic in agriculture, yet the specific genes/proteins responsible for this trait and the molecular mechanisms underlying reduced longevity during seed aging remain largely elusive. Here we report the comparative proteome and metabolome profiling of three rice cultivars exhibiting varying degrees of aging tolerance: Dharial, an aging-tolerant cultivar; Ilmi, an aging-sensitive cultivar; and A2, a moderately aging-tolerant cultivar developed from the crossbreeding of Dharial and Ilmi. Artificial aging treatment (AAT) markedly reduced the germination percentage and enhanced the activities of antioxidant enzymes in all the cultivars. Further, proteomics results showed a key role of the ubiquitin (Ub)-proteasome pathway in the degradation of damaged proteins during AAT while other proteases were majorly reduced. In addition, proteins associated with energy production and protein synthesis were strongly reduced in Ilmi while these were majorly increased in A2 and Dharial. These, along with metabolomics results, suggest that Ub-proteasome mediated protein degradation during AAT results in the accumulation of free amino acids in Ilmi while tolerant cultivars potentially utilize those for energy production and synthesis of stress-related proteins, especially hsp20/alpha-crystallin family protein. Additionally, both Dharial and A2 seem to activate brassinosteroid signaling and suppress jasmonate signaling which initiates a signaling cascade that allows accumulation of enzymatic and non-enzymatic antioxidants for efficient detoxification of aging-induced ROS. Taken together, these results provide an in-depth understanding of the aging-induced changes in rice seeds and highlight key pathways responsible for maintaining seed longevity during AAT.


Assuntos
Antioxidantes , Oryza , Antioxidantes/metabolismo , Brassinosteroides/metabolismo , Germinação , Oryza/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sementes/metabolismo
3.
J Pharm Pharmacol ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37942668

RESUMO

Cisplatin-induced acute kidney injury (AKI) is a clinical disease characterized by a sudden loss of renal function within a few hours or days, due to cisplatin uptake. Fulvestrant is an oestrogen receptor alpha (ERα) antagonist used for endocrine therapy. However, the role of fulvestrant in cisplatin-induced AKI remains unclear. In this study, we investigated the effects of fulvestrant on the regulation of apoptotic cell death and autophagic response in cisplatin-induced AKI. The human kidney proximal tubule epithelial cell line (HK-2) was co-treated with fulvestrant and cisplatin. C57BL/6 mice were subcutaneously injected with fulvestrant and cisplatin was administered via intraperitoneal injection. First, cisplatin treatment increased ERα expression, apoptosis, and autophagy in HK-2 cells. Fulvestrant treatment decreased apoptosis and autophagy, which were accompanied by cisplatin treatment in HK-2 cells. Consistent with in vitro results, cisplatin treatment significantly increased ERα expression in vivo. Additionally, cisplatin treatment increased renal injury, apoptosis, and autophagy. Surprisingly, compared to that in the cisplatin-treated mice group, reduced cisplatin-induced renal injury, apoptosis, and autophagy was observed in the cisplatin+fulvestrant-treated mice group. In summary, these results suggest that fulvestrant plays an important role in cisplatin-induced AKI by decreasing apoptosis and autophagy.

4.
Curr Issues Mol Biol ; 45(10): 8427-8443, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37886974

RESUMO

Focal cerebral ischemia (fCI) can result in brain injury and sensorimotor deficits. Brown algae are currently garnering scientific attention as potential therapeutic candidates for fCI. This study investigated the therapeutic effects of the hot water extract of Petalonia binghamiae (wPB), a brown alga, in in vitro and in vivo models of fCI. The neuroprotective efficacy of wPB was evaluated in an in vitro excitotoxicity model established using HT-22 cells challenged with glutamate. Afterward, C57/BL6 mice were administered wPB for 7 days (10 or 100 mg/kg, intragastric) and subjected to middle cerebral artery occlusion and reperfusion (MCAO/R) operation, which was used as an in vivo fCI model. wPB co-incubation significantly inhibited cell death, oxidative stress, and apoptosis, as well as stimulated the expression of heme oxygenase-1 (HO-1), an antioxidant enzyme, and the nuclear translocation of its upstream regulator, nuclear factor erythroid 2-related factor 2 (Nrf2) in HT-22 cells challenged with glutamate-induced excitotoxicity. Pretreatment with either dose of wPB significantly attenuated infarction volume, neuronal death, and sensorimotor deficits in an in vivo fCI model. Furthermore, the attenuation of oxidative stress and apoptosis in the ischemic lesion accompanied the wPB-associated protection. This study suggests that wPB can counteract fCI via an antioxidative effect, upregulating the Nrf2/HO-1 pathway.

5.
J Agric Food Chem ; 71(32): 12357-12367, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37549031

RESUMO

Improving the proteins and amino acid contents of rice seeds is one of the prime objectives of plant breeders. We recently developed an EMS mutant/high-protein mutant (HPM) of rice that exhibits 14.8% of the total protein content as compared to its parent Dharial (wild-type), which shows only 9.3% protein content in their mature seeds. However, the mechanisms underlying the higher protein accumulation in these HPM seeds remain largely elusive. Here, we utilized high-throughput proteomics to examine the differences in the proteome profiles of the embryo, endosperm, and bran tissues of Dharial and HPM seeds. Utilizing a label-free quantitative proteomic and subsequent functional analyses of the identified proteins revealed that nitrogen compound biosynthesis, intracellular transport, protein/amino acid synthesis, and photosynthesis-related proteins were specifically enriched in the endosperm and bran of the high-protein mutant seed. Our data have uncovered proteome-wide changes highlighting various functions of metabolic pathways associated with protein accumulation in rice seeds.


Assuntos
Oryza , Proteoma , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Sementes/genética , Sementes/metabolismo
6.
Proteomics ; 23(12): e2300035, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058097

RESUMO

Rice is a major component of the human diet and feeds more than 50 million people across the globe. We previously developed two pigmented rice cultivars, Super-hongmi (red seeds) and Super-jami (black seeds), that are highly rich in antioxidants and exhibit high levels of radical scavenging activities. However, the molecular mechanism underlying the accumulation of pigments and different antioxidants in these rice cultivars remains largely elusive. Here, we report the proteome profiles of mature Super-hongmi and Super-jami seeds, and compared them with the Hopum (white seeds) using a label-free quantitative proteomics approach. This approach led to the identification of 5127 rice seed proteins of which 1628 showed significant changes in the pigmented rice cultivar(s). The list of significantly modulated proteins included a phytoene desaturase (PDS3) which suggested accumulation of ζ-carotene in red seeds while the black seeds seem to accumulate more of anthocyanins because of the higher abundance of dihydroflavonol 4-reductase. Moreover, proteins associated with lignin and tocopherol biosynthesis were highly increased in both red and black cultivars. Taken together, these data report the seed proteome of three different colored rice seeds and identify novel components associated with pigment accumulation in rice.


Assuntos
Antioxidantes , Oryza , Humanos , Antocianinas/metabolismo , Tocoferóis/metabolismo , Oryza/genética , Oryza/metabolismo , Proteoma/metabolismo , Sementes/metabolismo
7.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835103

RESUMO

Ginseng, an important crop in East Asia, exhibits multiple medicinal and nutritional benefits because of the presence of ginsenosides. On the other hand, the ginseng yield is severely affected by abiotic stressors, particularly salinity, which reduces yield and quality. Therefore, efforts are needed to improve the ginseng yield during salinity stress, but salinity stress-induced changes in ginseng are poorly understood, particularly at the proteome-wide level. In this study, we report the comparative proteome profiles of ginseng leaves at four different time points (mock, 24, 72, and 96 h) using a label-free quantitative proteome approach. Of the 2484 proteins identified, 468 were salt-responsive. In particular, glycosyl hydrolase 17 (PgGH17), catalase-peroxidase 2, voltage-gated potassium channel subunit beta-2, fructose-1,6-bisphosphatase class 1, and chlorophyll a-b binding protein accumulated in ginseng leaves in response to salt stress. The heterologous expression of PgGH17 in Arabidopsis thaliana improved the salt tolerance of transgenic lines without compromising plant growth. Overall, this study uncovers the salt-induced changes in ginseng leaves at the proteome level and highlights the critical role of PgGH17 in salt stress tolerance in ginseng.


Assuntos
Arabidopsis , Panax , Proteínas de Plantas/genética , Proteoma/metabolismo , Hidrolases/metabolismo , Panax/metabolismo , Proteômica , Clorofila A/metabolismo , Tolerância ao Sal , Arabidopsis/metabolismo , Estresse Fisiológico , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Life Sci ; 309: 120980, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152678

RESUMO

Benign prostatic hyperplasia (BPH) is an age-related disease, whose etiology largely remains unclear. The regulation of mitophagy plays a key role in aging and associated diseases, however, its function in BPH has not been studied. Although the expression of the androgen receptor is primarily implicated in BPH, the estrogen receptor (ER) has been reported to be involved in the development of BPH by mediating the proliferation of prostate cells. Here, we studied the involvement of mitophagy and ERs in spontaneous BPH in aging mice and investigated their functions. To identify the activation of mitophagy and expression of ERs, 8-week, 12-month, and 24-month-old mice were used. Mice were treated with mitochondrial division inhibitor mdivi-1, a dynamin-related protein 1 (Drp1) inhibitor, to examine the expression of mitophagy-related proteins and the development of BPH. In addition, prostate stromal cells were treated with an ER antagonist to investigate the regulation of mitophagy following the expression of ERs. With aging, the Drp1 and phosphorylation of parkin reduce. Electron microscopy revealed reduced mitochondrial fission and mitophagy. In addition, the expression of androgen receptor was decreased and that of ERα was increased in aged mice with BPH. Treatment with mdivi-1 exacerbated BPH and increased cell proliferation. In addition, blockade of ERα increased mitophagy and decreased cell proliferation. In conclusion, mitophagy is reduced with aging during the development of BPH. We speculate that spontaneous BPH progresses through the reduction in the expression of ERα in aged mice by downregulating mitophagy.


Assuntos
Hiperplasia Prostática , Animais , Humanos , Masculino , Camundongos , Dinaminas/metabolismo , Receptor alfa de Estrogênio/metabolismo , Mitofagia , Hiperplasia Prostática/metabolismo , Receptores Androgênicos , Receptores de Estrogênio , Ubiquitina-Proteína Ligases
9.
Biomedicines ; 10(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009528

RESUMO

Lethal giant larvae (Lgl) is an apical-basal polarity gene first identified in Drosophila. LLGL2 is one of the mammalian homologs of Lgl. However, little is known about its function in the prostate. In this study, to explore the new role of LLGL2 in the prostate, we examined the proliferative activity of a BPH-1 cell line, a well-established model for the human prostate biology of benign prostatic hyperplasia (BPH). The expression of LLGL2 was dose-dependently increased in BPH-1 cells after treatment with 17ß-estradiol (E2). Additionally, E2 treatment increased the proliferation of the BPH-1 cells. However, the knockdown of LLGL2 with siRNA significantly suppressed the proliferation of the E2-treated BPH-1 cells. Moreover, si-llgl2 treatment up-regulated the expression of LC-3B, ATG7, and p-beclin, which are known to play a pivotal role in autophagosome formation in E2-treated BPH-1 cells. Overexpression of LLGL2 was able to further prove these findings by showing the opposite results from the knockdown of LLGL2 in E2-treated BPH-1 cells. Collectively, our results suggest that LLGL2 is closely involved in the proliferation of prostate cells by regulating autophagosome formation. These results provide a better understanding of the mechanism involved in the effect of LLGL2 on prostate cell proliferation. LLGL2 might serve as a potential target in the diagnosis and/or treatment of human BPH.

10.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893746

RESUMO

New compounds with 1H-pyrazolo [3,4-d]pyrimidin-6-amine core scaffolds were synthesized and characterized in vitro to determine their affinity for human A2A and A1 receptors. Among the tested compounds, a few compounds displayed nanomolar binding affinities for both receptors. One particular compound, 11o, showed high binding activities (hA2A Ki = 13.3 nM; hA1 Ki = 55 nM) and full antagonism (hA2A IC50 = 136 nM; hA1 IC50 = 98.8 nM) toward both receptors. Further tests showed that 11o has low hepatic clearance and good pharmacokinetic properties in mice, along with high bioavailability and a high brain plasma ratio. In addition, 11o was associated with very low cardiovascular risk and mutagenic potential, and was well-tolerated in rats and dogs. When tested in an MPTP-induced mouse model of Parkinson's disease, 11o tended to improve behavior. Moreover, 11o dose-dependently reversed haloperidol-induced catalepsy in female rats, with graded ED50 of between 3 and 10 mg/kg. Taken together, these results suggest that this potent dual A2A/A1 receptor antagonist, 11o, is a good candidate for the treatment of Parkinson's disease with an excellent metabolic and safety profile.

11.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897746

RESUMO

Exposure to particulate matter (PM) has been linked with the severity of various diseases. To date, there is no study on the relationship between PM exposure and tendon healing. Open Achilles tenotomy of 20 rats was performed. The animals were divided into two groups according to exposure to PM: a PM group and a non-PM group. After 6 weeks of PM exposure, the harvest and investigations of lungs, blood samples, and Achilles tendons were performed. Compared to the non-PM group, the white blood cell count and tumor necrosis factor-alpha expression in the PM group were significantly higher. The Achilles tendons in PM group showed significantly increased inflammatory outcomes. A TEM analysis showed reduced collagen fibrils in the PM group. A biomechanical analysis demonstrated that the load to failure value was lower in the PM group. An upregulation of the gene encoding cyclic AMP response element-binding protein (CREB) was detected in the PM group by an integrated analysis of DNA methylation and RNA sequencing data, as confirmed via a Western blot analysis showing significantly elevated levels of phosphorylated CREB. In summary, PM exposure caused a deleterious effect on tendon healing. The molecular data indicate that the action mechanism of PM may be associated with upregulated CREB signaling.


Assuntos
Tendão do Calcâneo , Material Particulado , Tendão do Calcâneo/metabolismo , Animais , Fenômenos Biomecânicos , Metilação de DNA , Material Particulado/toxicidade , RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA
12.
Chin J Nat Med ; 20(7): 518-526, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35907650

RESUMO

Benign prostatic hyperplasia (BPH) is a chronic male disease characterized by the enlarged prostate. Celtis chosenianaNakai (C. choseniana) is medicinally used to alleviate pain, gastric disease, and lung abscess. In this study, the effect of C. choseniana extract on BPH was investigated using testosterone-induced rats. Sprague Dawley rats were divided into five groups: control, BPH (testosterone 5 mg·kg-1), Fina (finasteride 2 mg·kg-1), and C. choseniana (50 and 100 mg·kg-1). After four weeks of TP treatment with finasteride or C. choseniana, prostate weights and DHT levels were measured. In addition, the prostates were histopathologically examined and measured for protein kinase B (Akt)/nuclear factor-κB (NF-κB)/AR signaling, proliferation, apoptosis, and autophagy. Prostate weight and epithelial thickness were reduced in the C. choseniana groups compared with that in the BPH group. The extract of C. choseniana acted as a 5α reductase inhibitor, reducing DHT levels in the prostate. Furthermore, the extract of C. choseniana blocked the activation of p-Akt, nuclear NF-κB activation and reduced the expression of AR and PSA compared with BPH. Moreover, the expression of Bax, PARP-1, and p53 increased, while the expression of bcl-2 decreased. The present study demonstrated that C. choseniana extract alleviated testosterone-induced BPH by suppressing 5α reductase and Akt/NF-κB activation, reducing AR signaling and inducing apoptosis and autophagy in the prostate. These results suggested that C. choseniana probably contain potential herbal agents to alleviate BPH.


Assuntos
Hiperplasia Prostática , Animais , Colestenona 5 alfa-Redutase/metabolismo , Finasterida/efeitos adversos , Masculino , NF-kappa B/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Testosterona , Ulmaceae/metabolismo
13.
Iran J Pharm Res ; 21(1): e133333, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36896319

RESUMO

Background: Stauntonia hexaphylla has been a traditional folk remedy for alleviating fever and providing anti-inflammatory properties. Androgenetic alopecia (AGA) is the most common form mediated by the presence of the dihydrotestosterone (DHT). Objectives: In this study, we evaluated the effects of an extract of S. hexaphylla on AGA models and its mechanisms of action. Methods: We studied S. hexaphylla extract to evaluate 5α-reductase and androgen receptor (AR) levels, apoptosis, and cell proliferation in vitro and in vivo. In addition, paracrine factors for androgenic alopecia, such as transforming growth factor beta-1 (TGF-ß1) and dickkopf-a (DKK-1), were examined. Apoptosis was investigated, and the evaluation of proliferation was examined with cytokeratin 14 (CK-14) and proliferating cell nuclear antigen (PCNA). Results: In human follicular dermal papilla cells, the 5α-reductase and AR were decreased following S. hexaphylla treatment, which reduced the Bax/Bcl-2 ratio. Histologically, the dermal thickness and follicle number were higher in the S. hexaphylla groups compared with the AGA group. In addition, the DHT concentration, 5α-reductase, and AR were decreased, thereby downregulating TGF-ß1 and DKK-1 expression and upregulating cyclin D in S. hexaphylla groups. The numbers of keratinocyte-positive and PCNA-positive cells were increased compared to those in the AGA group. Conclusions: The present study demonstrated that the S. hexaphylla extract ameliorated AGA by inhibiting 5α-reductase and androgen signaling, reducing AGA paracrine factors that induce keratinocyte (KC) proliferation, and inhibition apoptosis and catagen prematuration.

14.
Plants (Basel) ; 10(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34371612

RESUMO

Korean ginseng is one of the most valuable medicinal plants worldwide. However, our understanding of ginseng proteomics is largely limited due to difficulties in the extraction and resolution of ginseng proteins because of the presence of natural contaminants such as polysaccharides, phenols, and glycosides. Here, we compared four different protein extraction methods, namely, TCA/acetone, TCA/acetone-MeOH/chloroform, phenol-TCA/acetone, and phenol-MeOH/chloroform methods. The TCA/acetone-MeOH/chloroform method displayed the highest extraction efficiency, and thus it was used for the comparative proteome profiling of leaf, root, shoot, and fruit by a label-free quantitative proteomics approach. This approach led to the identification of 2604 significantly modulated proteins among four tissues. We could pinpoint differential pathways and proteins associated with ginsenoside biosynthesis, including the methylerythritol 4-phosphate (MEP) pathway, the mevalonate (MVA) pathway, UDP-glycosyltransferases (UGTs), and oxidoreductases (CYP450s). The current study reports an efficient and reproducible method for the isolation of proteins from a wide range of ginseng tissues and provides a detailed organ-based proteome map and a more comprehensive view of enzymatic alterations in ginsenoside biosynthesis.

15.
Mol Med ; 27(1): 25, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691614

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is one of the most important medical complications of diabetes mellitus. Autophagy is an important mediator of pathological response and plays a critical role in inflammation during the progression of diabetic nephropathy. Interleukin (IL)-17A favorably modulates inflammatory disorders including DN. In this study, we examined whether IL-17A deficiency affected the autophagy process in the kidneys of mice with streptozotocin (STZ)-induced DN. METHODS: The autophagic response of IL-17A to STZ-induced nephrotoxicity was evaluated by analyzing STZ-induced functional and histological renal injury in IL-17A knockout (KO) mice. RESULTS: IL-17A KO STZ-treated mice developed more severe nephropathy than STZ-treated wild-type (WT) mice, with increased glomerular damage and renal interstitial fibrosis at 12 weeks. IL-17A deficiency also increased the up-regulation of proinflammatory cytokines and fibrotic gene expression after STZ treatment. Meanwhile, autophagy-associated proteins were induced in STZ-treated WT mice. However, IL-17A KO STZ-treated mice displayed a significant decrease in protein expression. Especially, the levels of LC3 and ATG7, which play crucial roles in autophagosome formation, were notably decreased in the IL-17A KO STZ-treated mice compared with their WT counterparts. CONCLUSIONS: IL-17 deficiency aggravates of STZ-induced DN via attenuation of autophagic response. Our study demonstrated that IL-17A mediates STZ-induced renal damage and represents a potential therapeutic target in DN.


Assuntos
Autofagossomos/imunologia , Citocinas/imunologia , Diabetes Mellitus Experimental/imunologia , Nefropatias Diabéticas/imunologia , Animais , Proteína 7 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular , Citocinas/genética , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Humanos , Rim/imunologia , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Fator de Transcrição STAT3/metabolismo , Estreptozocina , Enzimas de Conjugação de Ubiquitina/metabolismo
16.
Antioxidants (Basel) ; 10(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672316

RESUMO

Diabetic nephropathy (DN) is one of the causes of end-stage renal failure, featuring renal fibrosis. However, autophagy, a vital process for intracellular homeostasis, can counteract renal fibrosis. Moreover, NAD(P)H: quinone dehydrogenase 1 (NQO1) modulates the ratios of reduced/oxidized nicotinamide nucleotides, exerting a cytoprotective function. Here, to examine the role of NQO1 genes in DN progression, the levels of autophagy-related proteins and pro-fibrotic markers were assessed in silencing or overexpression of NQO1 in human proximal tubular cells (HK2), and C57BL/6 (wild-type) and Nqo1 knockout (KO) mice injected to streptozotocin (50 mg/kg). NQO1 deficiency impaired the autophagy process by suppressing basal expression of ClassⅢ PI 3-kinase (Vps34) and autophagy-related (ATG)14L and inducing the expressions of transforming growth factor beta (TGF-ß1), Smad3, and matrix metallopeptidase9 (MMP9) in high-glucose (HG) -treated HK2 cells. Meanwhile, NQO1 overexpression increased the expression of Vps34 and ATG14L, while, reducing TGF-ß1, Smad3 and MMP9 expression. In vivo, the expression of Vps34 and ATG14L were suppressed in Nqo1 KO mice indicating aggravated glomerular changes and interstitial fibrosis. Therefore, NQO1 deficiency dysregulated autophagy initiation in HK2 cells, with consequent worsened renal cell damage under HG condition. Moreover, STZ-treated Nqo1 KO mice showed that NQO1 deficiency aggravated renal fibrosis by dysregulating autophagy.

17.
Bioorg Med Chem Lett ; 40: 127963, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33741464

RESUMO

Human indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan dioxygenase (hTDO) are rate-limiting enzymes in the kynurenine pathway (KP) of l-tryptophan (l-Trp) metabolism and are becoming key drug targets in the combination therapy of checkpoint inhibitors in immunoncology. To discover a selective and potent IDO1 inhibitor, a structure-activity relationship (SAR) study of N-hydroxybenzofuran-5-carboximidamide as a novel scaffold was investigated in a systematic manner. Among the synthesized compounds, the N-3-bromophenyl derivative 19 showed the most potent inhibition, with an IC50 value of 0.44 µM for the enzyme and 1.1 µM in HeLa cells. The molecular modeling of 19 with the X-ray crystal structure of IDO1 indicated that dipole-ionic interactions with heme iron, halogen bonding with Cys129 and the two hydrophobic interactions were important for the high potency of 19.


Assuntos
Amidinas/farmacologia , Benzofuranos/farmacologia , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Oximas/farmacologia , Amidinas/síntese química , Amidinas/metabolismo , Benzofuranos/síntese química , Benzofuranos/metabolismo , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Oximas/síntese química , Oximas/metabolismo , Ligação Proteica , Eletricidade Estática , Relação Estrutura-Atividade
18.
PLoS One ; 15(8): e0236879, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790676

RESUMO

Benign prostatic hyperplasia (BPH) is a progressive pathological condition associated with proliferation of prostatic tissues, prostate enlargement, and lower-urinary tract symptoms. However, the mechanism underlying the pathogenesis of BPH is unclear. The aim of this study was to investigate the protective effects of a combination of Stauntonia hexaphylla and Cornus officinalis (SC extract) on a testosterone propionate (TP)-induced BPH model. The effect of SC extract was examined in a TP-induced human prostate adenocarcinoma cell line. Male Sprague-Dawley rats were randomly divided into 5 groups (n = 6) for in vivo experiments. To induce BPH, all rats, except those in the control group, were administered daily with subcutaneous injections of TP (5 mg/kg) and orally treated with appropriate phosphate buffered saline/drugs (finasteride/saw palmetto/SC extract) for 4 consecutive weeks. SC extract significantly downregulated the androgen receptor (AR), prostate specific antigen (PSA), and 5α-reductase type 2 in TP-induced BPH in vitro. In in vivo experiments, SC extract significantly reduced prostate weight, size, serum testosterone, and dihydrotestosterone (DHT) levels. Histologically, SC extract markedly recovered TP-induced abnormalities and reduced prostatic hyperplasia, thereby improving the histo-architecture of TP-induced BPH rats. SC extract also significantly downregulated AR and PSA expression, as assayed using immunoblotting. Immunostaining revealed that SC extract markedly reduced the 5α-reductase type 2 and significantly downregulated the expression of proliferating cell nuclear antigen. In addition, immunoblotting of B-cell lymphoma 2 (Bcl-2) family proteins indicated that SC extract significantly downregulated anti-apoptotic Bcl-2 and markedly upregulated pro-apoptotic B cell lymphoma-associated X (Bax) expression. Furthermore, SC treatment significantly decreased the Bcl-2/Bax ratio, indicating induced prostate cell apoptosis in TP-induced BPH rats. Thus, our findings demonstrated that SC extract protects against BPH by inhibiting 5α-reductase type 2 and inducing prostate cell apoptosis. Therefore, SC extract might be useful in the clinical treatment of BPH.


Assuntos
Apoptose/efeitos dos fármacos , Colestenona 5 alfa-Redutase/química , Extratos Vegetais/farmacologia , Hiperplasia Prostática/prevenção & controle , Substâncias Protetoras/uso terapêutico , Inibidores de 5-alfa Redutase/química , Inibidores de 5-alfa Redutase/farmacologia , Inibidores de 5-alfa Redutase/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colestenona 5 alfa-Redutase/metabolismo , Cornus/química , Cornus/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Masculino , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Folhas de Planta/metabolismo , Antígeno Prostático Específico/sangue , Hiperplasia Prostática/etiologia , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ranunculales/química , Ranunculales/metabolismo , Ratos , Ratos Sprague-Dawley , Propionato de Testosterona/efeitos adversos
19.
Bioorg Med Chem Lett ; 30(12): 127165, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305165

RESUMO

A series of isosteric surrogates of the 4-phenyl group in luminespib were investigated as new scaffolds of the Hsp90 inhibitor for the discovery of novel antitumor agents. Among the synthesized surrogates of isoxazole and pyrazole, compounds 4a, 5e and 12b exhibited potent Hsp90 inhibition in ATPase activity and Her2 degradation assays and significant antitumor activity in A2780 and HCT116 cell lines. Animal studies indicated that compared to luminespib, their activities were superior in A2780 or NCI-H1975 tumor xenograft models. A molecular modeling study demonstrated that compound 4a could fit nicely into the N-terminal ATP binding pocket.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Resorcinóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Resorcinóis/síntese química , Resorcinóis/química , Relação Estrutura-Atividade
20.
J Ethnopharmacol ; 254: 112693, 2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32112899

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C.A. Mey. (Korean ginseng) has been widely used in traditional medicine to treat diabetes mellitus for thousands of years. It also plays a key role in health maintenance owing to its anti-oxidant and anti-fatigue properties, and is quite popular as a dietary supplement. AIM OF THE STUDY: This study was designed to offer a complementary and alternative medicine to manage the diabetic kidney disease (DKD), which causes long-term damage to the renal structure. We also investigated the regulation of the autophagy mechanism, which is the underlying the pathogenesis of DKD. MATERIALS AND METHODS: The effect of Korean red ginseng (KRG) on DKD was evaluated using human kidney proximal tubular cells and streptozotocin (STZ)-treated Sprague-Dawley rat models. In vitro experiments were conducted to evaluate the proteins related to fibrosis and autophagy. This was followed by in vivo experiments involving rats treated with single intraperitoneal administration of STZ (60 mg/kg) and then with KRG solution orally for 4 weeks. Proteins related to renal injury, fibrosis, and autophagy were determined by immunoblotting. Hematoxylin and eosin (H&E), Periodic acid-Schiff (PAS), Sirius red, and immunostaining were processed for histological studies. RESULTS: KRG diminished the levels of metabolic measurements and blood parameters. Western blotting showed a decreased expression of proteins, such as TGF-ß1, KIM1, and AGE, which are responsible for renal inflammation, injury, and fibrosis. Histological studies also supported these results and revealed that the KRG-treated groups recovered from renal injury and fibrosis. Furthermore, the autophagy marker, LC3, was upregulated, whereas p62 was downregulated. The levels of proteins related to the autophagy mechanism, such as ATG7, increased, while mammalian target of rapamycin (mTOR) decreased with the KRG treatment and exhibited accelerated autophagy compared to the STZ alone group. CONCLUSIONS: KRG can suppress renal inflammation, injury, and fibrosis by blocking TGF-ß1 activation and can induce cellular autophagy. Therefore, this study strongly suggests that KRG exhibits a renoprotective effect against the STZ-induced DKD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Panax , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Fibrose , Humanos , Hiperglicemia/sangue , Hiperglicemia/complicações , Hiperglicemia/patologia , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Fitoterapia , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...