Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Korean J Chem Eng ; : 1-13, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37363783

RESUMO

We successfully prepared activated carbon derived from polyethylene terephthalate (PET) via carbonization and subsequent activation under various conditions and applied it as active material for supercapacitors. In the activation, we used CO2 for physical activation or KOH for chemical activation and varied the activation temperature from 600 °C to 1,000 °C. We found that CO2 activation is unsuitable because of insufficient pore formation or low activation yield. Interestingly, PET-derived activated carbon obtained using KOH (PETK) at 700 °C-900 °C exhibited higher specific surface areas than YP50f, which is a commercial activated carbon. Furthermore, some PETKs even displayed a dramatic increase in crystallinity. In particular, the PET-derived activated carbon prepared at 900 °C with KOH (PETK900) had the highest retention rate at a high charge-discharge rate and better durability after 2500 cycles than YP50f. Furthermore, employing the same process that we used with the PET chips, we successfully converted waste PET bottles into activated carbon materials. Waste PET-derived activated carbons exhibited good electrochemical performance as active material for supercapacitors. We thus found chemical activation with KOH to be an appropriate method for manufacturing PET-derived activated carbon and PETKs derived both from PET chips and waste PET have considerable potential for commercial use as active materials for supercapacitors. Electronic Supplementary Material: Supplementary material is available for this article at 10.1007/s11814-023-1466-3 and is accessible for authorized users.

2.
Macromol Rapid Commun ; 43(10): e2200006, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35316561

RESUMO

High-performance supercapacitors based on activated carbons (AC) derived from polyethylene (PE), which is one of the most abundant plastic materials worldwide, are fabricated. First, PE carbons (PEC) are prepared via sulfonation, which is a reported solution for successful carbonization of innately non-carbonizable PE. Then, the physico-electrical changes of PECs upon a chemical activation process are explored. Interestingly, upon the chemical activation, PECs are converted ACs with a large surface area and high crystallinity at the same time. Subsequently, PE-derived ACs (PEAC) are exploited as electrode materials for supercapacitors. Resultant supercapacitors based on PEACs exhibit impressive performance. When compared to supercapacitors based on YP50f, representative commercial ACs, devices using PEACs presented considerably good capacitance, low resistance, and great rate capability. Specifically, the retention rate of devices using PEACs is significantly higher than that of YP50f-based devices. At the high rate of charge-discharge situation reaching 7 A g-1 , the capacitance of supercapacitors using PEACs is ≈70% higher than that of YP50f-based devices. It is assumed that the carbon structure accompanying both large surface area and high conductivity endows a great electrochemical performance at the high current operating conditions. Therefore, it is envisioned that PE may be a viable candidate electrode material for commercially available supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...