Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234566

RESUMO

The design of a novel binder is required for high-capacity silicon anodes, which typically undergo significant changes during charge/discharge cycling. Hence, in this study, a stable network structure was formed by combining tannic acid (TAc), which can be cross-linked, and poly(acrylic acid)(PAA) as an effective binder for a silicon (Si) anode. TAc is a phenolic compound and representative substance with antioxidant properties. Owing to the antioxidant ability of the C-PAA/TAc binder, side reactions during the cycling were suppressed during the formation of an appropriate solid-electrolyte interface layer. The results showed that the expansion of a silicon anode was suppressed compared with that of a conventional PAA binder. This study demonstrates that cross-linking and antioxidant capability facilitate binding and provides insights into the behavior of binders for silicon anodes. The Si anode with the C-PAA/TAc binder exhibited significantly improved cycle stability and higher Coulombic efficiency in comparison to the Si anode with well-established PAA binders. The C-PAA/TAc binder demonstrated a capacity of 1833 mA h g-1Si for 100 cycles, which is higher than that of electrodes fabricated using the conventional PAA binder. Therefore, the C-PAA/TAc binder offers better electrochemical performance.

2.
Nanomaterials (Basel) ; 12(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630871

RESUMO

Silicon-based electrodes are widely recognized as promising anodes for high-energy-density lithium-ion batteries (LIBs). Silicon is a representative anode material for next-generation LIBs due to its advantages of being an abundant resource and having a high theoretical capacity and a low electrochemical reduction potential. However, its huge volume change during the charge-discharge process and low electrical conductivity can be critical problems in its utilization as a practical anode material. In this study, we solved the problem of the large volume expansion of silicon anodes by using the carbon coating method with a low-cost phenolic resin that can be used to obtain high-performance LIBs. The surrounding carbon layers on the silicon surface were well made from a phenolic resin via a solvent-assisted wet coating process followed by carbonization. Consequently, the electrochemical performance of the carbon-coated silicon anode achieved a high specific capacity (3092 mA h g-1) and excellent capacity retention (~100% capacity retention after 50 cycles and even 64% capacity retention after 100 cycles at 0.05 C). This work provides a simple but effective strategy for the improvement of silicon-based anodes for high-performance LIBs.

3.
J Biol Chem ; 291(4): 1692-1702, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26631734

RESUMO

Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3-17), helix II (residues 39-53), helix III (residues 60-64), and helix IV (residues 68-78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe(45) in helix II and Phe(18) in the α1α2 loop and a hydrogen bonding between Ser(15) in helix I and Ile(20) in the α1α2 loop, resulting in its high thermal stability. Phe(45)-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser(58) in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.


Assuntos
Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Enterococcus faecalis/metabolismo , Proteína de Transporte de Acila/genética , Cristalografia por Raios X , Enterococcus faecalis/química , Enterococcus faecalis/genética , Temperatura Alta , Ligação de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...