Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 66(4): 957-962, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29323901

RESUMO

Microbial biosynthesis of metal nanoparticles has been extensively studied for the applications in biomedical sciences and engineering. However, the mechanism for their synthesis through microorganism is not completely understood. In this study, several culture media were investigated for their roles in the microbial biosynthesis of silver nanoparticles (AgNPs). The size and morphology of the synthesized AgNPs were analyzed by UV-vis spectroscopy, Fourier-transform-infrared (FT-IR), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The results demonstrated that nutrient broth (NB) and Mueller-Hinton broth (MHB) among tested media effectively reduced silver ions to form AgNPs with different particle size and shape. Although the involved microorganism enhanced the reduction of silver ions, the size and shape of the particles were shown to mainly depend on the culture media. Our findings suggest that the growth media of bacterial culture play an important role in the synthesis of metallic nanoparticles with regard to their size and shape. We believe our findings would provide useful information for further exploration of microbial biosynthesis of AgNPs and their biomedical applications.


Assuntos
Bactérias/metabolismo , Nanopartículas Metálicas , Prata/metabolismo , Meios de Cultura , Difusão Dinâmica da Luz , Escherichia coli/metabolismo , Klebsiella pneumoniae/metabolismo , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Appl Microbiol Biotechnol ; 99(22): 9427-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26239074

RESUMO

The microbiological production of 2,3-butanediol (2,3-BDO) has attracted considerable attention as an alternative way to produce high-value chemicals from renewable sources. Among the number of 2,3-BDO-producing microorganisms, Klebsiella pneumoniae has been studied most extensively and is known to produce large quantity of 2,3-BDO from a range of substrates. On the other hand, the pathogenic characteristics of the bacteria have limited its industrial applications. In this study, two major virulence traits, outer core LPS and fimbriae, were removed through homologous recombination from 2,3-BDO-producing K. pneumoniae 2242 to expand its uses to the industrial scale. The K. pneumoniae 2242 ∆wabG mutant strain was found to have an impaired capsule, which significantly reduced its ability to bind to the mucous layer and evade the phagocytic activity of macrophage. The association with the human ileocecal epithelial cell, HCT-8, and the bladder epithelial cell, T-24, was also reduced dramatically in the K. pneumoniae 2242 ∆fimA mutant strain that was devoid of fimbriae. However, the growth rate and production yield for 2,3-BDO were unaffected. The K. pneumoniae strains developed in this study, which are devoid of the major virulence factors, have a high potential for the efficient and sustainable production of 2,3-BDO.


Assuntos
Butileno Glicóis/metabolismo , Fímbrias Bacterianas/genética , Klebsiella pneumoniae/genética , Lipopolissacarídeos/genética , Fatores de Virulência/genética , Aderência Bacteriana , Cápsulas Bacterianas , Linhagem Celular , Células Epiteliais/microbiologia , Fermentação , Fímbrias Bacterianas/ultraestrutura , Engenharia Genética , Recombinação Homóloga , Humanos , Microbiologia Industrial/métodos , Klebsiella pneumoniae/ultraestrutura , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Macrófagos/microbiologia , Mutação , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...