Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(8): 3004-3013, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37487692

RESUMO

Commercial hydrogen (H2) sensors operate at high temperatures, which increases power consumption and poses a safety risk owing to the flammable nature of H2. Here, a polymer-noble metal-metal oxide film is fabricated using the spin-coating and printing methods to realize a highly sensitive, low-voltage operation, wide-operating-concentration, and near-monoselective H2 sensor at room temperature. The H2 sensors with an optimized thickness of Pd nanoparticles and SnO2 showed an extremely high response of 16,623 with a response time of 6 s and a recovery time of 5 s at room temperature and 2% H2. At the same time, printed flexible sensors demonstrate excellent sensitivity, with a response of 2300 at 2% H2. The excellent sensing performance at room temperature is due to the optimal SnO2 thickness, corresponding to the Debye length and the oxygen and H2 spillover caused by the optimized coverage of the Pd catalyst. Furthermore, multistructures of WO3 and SnO2 films are used to fabricate a new type of dual-signal sensor, which demonstrated simultaneous conductance and transmittance, i.e., color change. This work provides an effective strategy to develop robust, flexible, transparent, and long-lasting H2 sensors through large-area printing processes based on polymer-metal-metal oxide nanostructures.


Assuntos
Colorimetria , Hidrogênio , Temperatura , Óxidos , Polímeros
2.
Polymers (Basel) ; 14(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36501724

RESUMO

In this paper, we present dual responsive one-dimensional (1D) photonic crystal (PC) multilayer films that utilize a high-humidity environment and temperature. Dual responsive 1D PC multilayer films are fabricated on precoated thermochromic film by sequential alternate layer deposition of photo-crosslinkable poly(2-vinylnaphthalene-co-benzophenone acrylate) (P(2VN-co-BPA)) as a high refractive index polymer, and poly(4-vinylpyrollidone-co-benzophenone acrylate) P(4VP-co-BPA) as a low refractive index polymer. The thermochromic film shows a vivid color transition from black to white at 28 °C. Three different colors of thermochromic 1D PC multilayer films are prepared by thickness modulation of P(4VP-co-BPA) layers, and the films on a black background exhibit visible spectrum color only in a high-humidity environment (over 90% relative humidity (RH)). For the three films placed on a hands display, three different composite colors are synthesized by the reflection of light, including yellow, magenta, and cyan, due to the changing of backgrounds from black to white with temperature. Additionally, the films show remarkable color transitions with reliable reversibility. The films can be applied as anti-counterfeiting labels and can be used for smart decoration films. To the best of our knowledge, this is the first report of dual response colorimetric films that change color in various ways depending on temperature and humidity changes, and we believe that it can be applied to various applications.

3.
Polymers (Basel) ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235911

RESUMO

To improve the peel strength and holding time of polypropylene glycol (PPG)-based pressure-sensitive adhesives (PSAs), a semi-interpenetrating polymer network (semi-IPN) was prepared using acrylic polymers. In addition, to prevent air pollution due to volatile organic compound emissions and avoid the degradation of physical properties due to a residual solvent, the PPG-based semi-IPN PSAs were fabricated by an eco-friendly solvent-free method using an acrylic monomer instead of an organic solvent. PPG-based semi-IPN PSAs with different hard segment contents (2.9-17.2%) were synthesized; their holding time was found to depend on the hard segment contents. The peel strength was improved because of the formation of the semi-IPN structure. Moreover, the high degree of hard domain formation in the semi-IPN PSA, derived from the increase in the hard segment content using a chain extender, resulted in a holding time improvement. We believe that the as-prepared PSAs can be used in various applications that require high creep resistance.

4.
Nanoscale ; 14(14): 5377-5383, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35319042

RESUMO

A new concept for anti-counterfeiting security films that utilize the humidity from human breath to reveal a QR code on color-tunable one-dimensional (1D) PC films is presented. The 1D PC film was fabricated on a transparent polyethylene terephthalate (PET) substrate via sequential alternate layer deposition of photo-crosslinkable poly(2-vinylnaphthalene-co-benzophenone acrylate) (P(2VN-co-BPA)) and quaternized poly(4-vinylpyridine-co-benzophenone acrylate) (P(4VP-co-BPA)) (P4QP-51%). The films exhibited remarkable color transitions with reliable reversibility and reproducibility. Films placed on a black background exhibited the full visible spectrum color in a high humidity environment. Additionally, films placed on a white background displayed three different composite colors, including yellow, magenta, and cyan. These films with vivid color transitions in a high humidity environment can be applied as anti-counterfeiting films. A hidden QR code was also laser printed on the initial PC film to enhance the film's anti-counterfeiting security capabilities. These colorimetric 1D PC films can be used as anti-counterfeiting labels and for information storage.

5.
Healthcare (Basel) ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066120

RESUMO

This study examined and verified the level of e-health literacy (e-HL) and infection preventive behaviors related to COVID-19 among undergraduate students majoring in healthcare. An online survey was conducted with 274 university students majoring in nursing, clinical pathology, and occupational therapy in South Korea. The e-HL consisted of functional, communicational, and critical literacy, and preventive behaviors were based on the Prevention Guideline on Droplet Infection. The mean score for e-HL was 3.62, with nursing students obtaining the highest scores. The overall e-HL score and the scores on its three sub-dimensions were related to infection-preventive behaviors. Moreover, e-HL affected infection-preventive behaviors (p < 0.001). Findings from this study highlight the necessity of education for improving the e-HL of undergraduate students majoring in healthcare to strengthen infection-preventive behaviors and protect patients from infectious diseases.

6.
ACS Appl Mater Interfaces ; 13(8): 9965-9974, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33599475

RESUMO

Nickel-rich layered oxides (LiNi1-x-yCoxMnyO2; (1 - x - y) ≥ 0.6), the high-energy-density cathode materials of lithium-ion batteries (LIBs), are seriously unstable at voltages higher than 4.5 V versus Li/Li+ and temperatures higher than 50 °C. Herein, we demonstrated that the failure mechanism of a nickel-rich layered oxide (LiNi0.6Co0.2Mn0.2O2) behind the instability was successfully suppressed by employing cyanoethyl poly(vinyl alcohol) having pyrrolidone moieties (Pyrd-PVA-CN) as a metal-ion-chelating gel polymer electrolyte (GPE). The metal-ion-chelating GPE blocked the plating of transition-metal ions dissolved from the cathode by capturing the ions (anode protection). High-concentration metal-ion environments developed around the cathode surface by the GPE suppressed the irreversible phase transition of the cathode material from the layered structure to the rock-salt structure (cathode protection). Resultantly, the capacity retention was significantly improved at a high voltage and a high temperature. Capacity retention and coulombic efficiency of a full-cell configuration of a nickel-rich layered oxide with graphite were significantly improved in the presence of the GPE especially at a high cutoff voltage (4.4 V) and an elevated temperature (55 °C).

7.
ACS Appl Mater Interfaces ; 12(9): 11055-11062, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32046484

RESUMO

Thin polymeric films were developed for the vapor-phase sequential colorimetric detection of a nerve agent mimic and ammonia with high sensitivity. N-(4-Benzoylphenyl)acrylamide (BPAm), N,N-dimethylacrylamide (DMA), and (E)-2-(methyl(4-(pyridine-4yldiazenyl)phenyl)amino)ethyl acrylate (MPDEA, M1) were copolymerized via free radical polymerization (FRP) to yield p(BPAm-co-DMA-co-MPDEA), hereafter referred to as P1. P1 exhibits selective sensing properties toward diethyl chlorophosphate (DCP), a nerve agent mimic, in pure aqueous media. Upon the addition of DCP, the pyridine groups of P1 were quaternized with DCP, accompanied by a color change from yellow to pink due to the enhancement of the intramolecular charge transfer (ICT) effect. In situ generated quaternized P1, hereafter referred to as P2, after DCP sensing was used to selectively detect ammonia via dequaternization in an aqueous medium. Ammonia detection was indicated by a color change in the solution from pink back to yellow. A surface-immobilized P1 film was prepared and employed for the vapor-phase detection of DCP, demonstrating that an amount of as low as 2 ppm was detectable. Ammonia vapor was also successfully detected by the P2 film via the ammonia-triggered removal of the quaternized phosphates. Alternating exposure of the film to DCP and ammonia resulted in the corresponding color changes, thereby demonstrating the reversibility of the system. The reusability of the polymeric film for detecting DCP and ammonia in the vapor phase was confirmed by performing four sequential colorimetric detection cycles.

8.
J Nanosci Nanotechnol ; 19(8): 4782-4786, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913787

RESUMO

Two new triarylmethane-based dye molecules with a dimeric structure, TAM-1 and TAM-2, were designed and synthesized as potential blue color filter materials for liquid-crystal displays. The dimeric structure of TAM-1 was designed to improve the thermal stability of a well-known blue dye, Victoria Blue BO. TAM-2 was designed to further improve the solubility of TAM-1 by introducing long alkyl ester groups. The synthesized dyes TAM-1 and TAM-2 were transmissive in the wavelength range of 410-460 nm and showed good thermal stability with 5% weight degradation temperatures (T5d) of 259 °C and 289 °C, respectively, and less than 1% of weight loss at 230 °C. Moreover, TAM-2 showed excellent solubility (20.1 wt%) as opposed to Victoria Blue BO (0.03 wt%) and TAM-1 (3.5 wt%) in PGMEA.

9.
Int J Biol Macromol ; 125: 660-667, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30550825

RESUMO

Chitin, a sustainable and functional biological macromolecule, can be converted into chitin nanofibers (ChNFs), and are applicable as a mechanically reinforcing and bioactive filler for polymer matrices. Improving the performance of ChNFs typically relies on their nanofibrilization and miscibility with matrices. To transform chitin biomass into organo-dispersible ChNFs, a series of time-/energy-consuming chemical and mechanical treatments are required: 1) deacetylation, 2) disintegration, 3) surface modification to minimize their aggregation through hydrogen bonds, 4) drying, and 5) re-dispersion. This paper presents a one-step method to transform chitin biomass to organo-dispersible acetylated ChNFs via a ball-milling method in the presence of relatively low toxic acetic anhydride without water. This method minimizes water contaminations and energy for dehydrating. The resulting chitin nanofiber material is mixed with poly(l­lactic acid) (PLLA) to produce all-bio-based nanocomposites. The composite indicated a 66% increase in Young's modulus and a 100% increase in tensile strength compared to the pristine PLLA. Furthermore, it did not exhibit any observable cytotoxic effect, thus potentially applicable as a biomedical material.


Assuntos
Quitina/química , Nanofibras/química , Biomassa , Módulo de Elasticidade , Ligação de Hidrogênio , Poliésteres/química , Polímeros/química , Resistência à Tração
10.
Kidney Res Clin Pract ; 34(1): 53-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26484020

RESUMO

MYH9-related disorder is an autosomal dominant disease caused by a mutation in the MYH9 gene, which encodes nonmuscle myosin heavy chain IIA (NMMHC-IIA). This disease is characterized by giant platelets, thrombocytopenia, granulocyte inclusion bodies, proteinuria, and high-pitch sensorineural deafness. Nephropathy has been observed in 30% of patients with MYH9-related disorder. The characteristic features are early onset proteinuria and rapidly progressing renal disorder. However, the prognosis of MYH9 nephropathy remains unclear. Herein, we describe a 36-year-old woman who presented with proteinuria and was diagnosed with MYH9 nephropathy via renal biopsy and gene analysis. Her proteinuria improved after administration of an angiotensin II receptor blocker, but was aggravated after changing to a calcium channel blocker.

11.
Macromol Rapid Commun ; 35(4): 442-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24019230

RESUMO

The purpose of this study is to develop novel triazole-containing hydrogels (TGs) as drug carrier and to investigate the sustained drug release accomplished by their time-dependent swelling behavior. The synthetic pathway of TGs includes: (1) DCC-coupling on hydroxyethyl methacrylate (HEMA) to prepare HEMA-alkyne (HA), (2) click-coupling to prepare a triazole-ring-containing monomer (TM), and (3) the synthesis of a series of TGs. The aggregation between triazole rings is found to be responsible for drug release controllability. Rhodamine 6G is studied as a model anticancer drug for release experiments. The effects of pH and temperature on the properties of sustained drug release are also studied.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Triazóis/química , Alcinos/química , Antineoplásicos/química , Química Click , Concentração de Íons de Hidrogênio , Metacrilatos/química , Rodaminas/química , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...