Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Taehan Yongsang Uihakhoe Chi ; 83(3): 559-581, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36238509

RESUMO

Although renal angiomyolipoma (AML) is a benign tumor, treatment may be necessary occasionally because it can cause potentially life-threatening retroperitoneal hemorrhage. Transarterial embolization (TAE) is a safe and effective treatment option to prevent the hemorrhagic rupture of AMLs and relieve the symptoms caused by enlarged lesions or active bleeding. However, there is no clear consensus regarding the indications for prophylactic TAE in patients with sporadic renal AMLs. In urgent TAE for bleeding AMLs, there is a likelihood of incomplete embolization when the focus is on stabilizing the clinical symptoms. This pictorial essay discusses the patient selection and technical considerations to achieve optimal therapeutic effects as well as the follow-up findings after TAE.

2.
Redox Biol ; 48: 102190, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798428

RESUMO

Cancer stem cells (CSCs) initiate tumor formation and are known to be resistant to chemotherapy. A metabolic alteration in CSCs plays a critical role in stemness and survival. However, the association between mitochondrial energy metabolism and the redox system remains undefined in colon CSCs. In this study, we assessed the role of the Sulfiredoxin-Peroxiredoxin (Srx-Prx) redox system and mitochondrial oxidative phosphorylation (OXPHOS) in maintaining the stemness and survival of colon CSCs. Notably, Srx contributed to the stability of PrxI, PrxII, and PrxIII proteins in colon CSCs. Increased Srx expression promoted the stemness and survival of CSCs and was important for the maintenance of the mitochondrial OXPHOS system. Furthermore, Nrf2 and FoxM1 led to OXPHOS activation and upregulated expression of Srx-Prx redox system-related genes. Therefore, the Nrf2/FoxM1-induced Srx-Prx redox system is a potential therapeutic target for eliminating CSCs in colon cancer.

3.
Animals (Basel) ; 11(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916888

RESUMO

To elucidate the functional role of V-set and immunoglobulin domain-containing 1 (VSIG1) in spermatogenesis and fertilization, we knocked out (KO) VSIG1 in a mouse embryo using CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9) -mediated genome editing. Reverse transcription PCR was performed using cDNA synthesized from VSIG1 KO testis RNA. Although Western blot analysis using a specific antibody to VSIG1 confirmed VSIG1 protein defects in the KO mice, hematoxylin-eosin staining analysis was similar in the KO and wild-type mice. Additionally, computer-assisted sperm analysis and in vitro fertilization experiments were conducted to confirm the activity and fertilization ability of sperm derived from the KO mouse. Mice lacking VSIG1 were viable and had no serious developmental defects. As they got older, the KO mice showed slightly higher weight loss, male mice lacking VSIG1 had functional testes, including normal sperm number and motility, and both male and female mice lacking VSIG1 were fertile. Our results from VSIG1 KO mice suggest that VSIG1 may not play essential roles in spermatogenesis and normal testis development, function, and maintenance. VSIG1 in sperm is dispensable for spermatogenesis and male fertility in mice. As several genes are known to possess slightly different functions depending on the species, the importance and molecular mechanism of VSIG1 in tissues of other species needs further investigation.

4.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233448

RESUMO

In recent decades, many studies on the treatment and prevention of pancreatic cancer have been conducted. However, pancreatic cancer remains incurable, with a high mortality rate. Although mouse models have been widely used for preclinical pancreatic cancer research, these models have many differences from humans. Therefore, large animals may be more useful for the investigation of pancreatic cancer. Pigs have recently emerged as a new model of pancreatic cancer due to their similarities to humans, but no pig pancreatic cancer cell lines have been established for use in drug screening or analysis of tumor biology. Here, we established and characterized an immortalized miniature pig pancreatic cell line derived from primary pancreatic cells and pancreatic cancer-like cells expressing K-rasG12D regulated by the human PTF1A promoter. Using this immortalized cell line, we analyzed the gene expression and phenotypes associated with cancer cell characteristics. Notably, we found that acinar-to-ductal transition was caused by K-rasG12D in the cell line constructed from acinar cells. This may constitute a good research model for the analysis of acinar-to-ductal metaplasia in human pancreatic cancer.


Assuntos
Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Lesões Pré-Cancerosas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Pâncreas/patologia , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Transdução de Sinais/genética , Suínos , Porco Miniatura
5.
J Microbiol Biotechnol ; 29(8): 1310-1315, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370115

RESUMO

Hyaluronidases enhance therapeutic drug transport by breaking down the hyaluronan barrier to lymphatic and capillary vessels, facilitating their tissue absorption. Commercially available hyaluronidases are bovine in origin; however, they pose risks such as bovine spongiform encephalopathy. The present study aimed to develop a novel, highly active hyaluronidase and assess its function. Therefore, in order to find the most efficient active hyaluronidase, we produced several shortened hyaluronidases with partial removal of the N- or C-terminal regions. Moreover, we created an enzyme that connected six histidines onto the end of the hyaluronidase C-terminus. This simplified subsequent purification using Ni2+ affinity chromatography, making it feasible to industrialize this highly active recombinant hyaluronidase which exhibited catalytic activity equal to that of the commercial enzyme. Therefore, this simple and effective isolation method could increase the availability of recombinant hyaluronidase for research and clinical purposes.


Assuntos
Histidina/metabolismo , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Oligopeptídeos/metabolismo , Proteínas Recombinantes , Animais , Bovinos , Moléculas de Adesão Celular/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Células HEK293 , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/isolamento & purificação , Concentração de Íons de Hidrogênio , Temperatura
6.
J Microbiol Biotechnol ; 28(9): 1547-1553, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30086619

RESUMO

Hyaluronidases are a family of enzymes that catalyse the breakdown of hyaluronic acid, which is abundant in the extracellular matrix and cumulus oocyte complex. To investigate the activity of recombinant bovine sperm hyaluronidase 1 (SPAM1) and determine the effect of the Asn-X-Ser/Thr motif on its activity, the bovine SPAM1 open reading frame was cloned into the mammalian expression vector pCXN2 and then transfected to the HEK293 cell line. Expression of recombinant bovine hyaluronidase was estimated using a hyaluronidase activity assay with gel electrophoresis. Recombinant hyaluronidase could resolve highly polymeric hyaluronic acid and also caused dispersal of the cumulus cell layer. Comparative analysis with respect to enzyme activity was carried out for the glycosylated and deglycosylated bovine sperm hyaluronidase by N-glycosidase F treatment. Finally, mutagenesis analysis revealed that among the five potential N-linked glycosylation sites, only three contributed to significant inhibition of hyaluronic activity. Recombinant bovine SPAM1 has hyaluronan degradation and cumulus oocyte complex dispersion ability, and the N-linked oligosaccharides are important for enzyme activity, providing a foundation for the commercialization of hyaluronidase.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/metabolismo , Espermatozoides/enzimologia , Motivos de Aminoácidos , Animais , Bovinos , Moléculas de Adesão Celular/genética , Células do Cúmulo/metabolismo , Feminino , Glicosilação , Células HEK293 , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Masculino , Mutagênese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...