Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 895: 164975, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336402

RESUMO

Perennial grains have potential to contribute to ecological intensification of food production by enabling the direct harvest of human-edible crops without requiring annual cycles of disturbance and replanting. Studies of prototype perennial grains and other herbaceous perennials point to the ability of agroecosystems including these crops to protect water quality, enhance wildlife habitat, build soil quality, and sequester soil carbon. However, genetic improvement of perennial grain candidates has been hindered by limited investment due to uncertainty about whether the approach is viable. As efforts to develop perennial grain crops have expanded in past decades, critiques of the approach have arisen. With a recent report of perennial rice producing yields equivalent to those of annual rice over eight consecutive harvests, many theoretical concerns have been alleviated. Some valid questions remain over the timeline for new crop development, but we argue these may be mitigated by implementation of recent technological advances in crop breeding and genetics such as low-cost genotyping, genomic selection, and genome editing. With aggressive research investment in the development of new perennial grain crops, they can be developed and deployed to provide atmospheric greenhouse gas reductions.


Assuntos
Agricultura , Melhoramento Vegetal , Humanos , Grão Comestível , Produtos Agrícolas , Solo
2.
Sci Adv ; 7(44): eabg8531, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714680

RESUMO

Relationships between species diversity, productivity, temporal stability of productivity, and plant invasion have been well documented in grasslands, and these relationships could translate to improved agricultural sustainability. However, few studies have explored these relationships in agricultural contexts where fertility and weeds are managed. Using 7 years of biomass yield and species composition data from 12 species mixture treatments varying in native species diversity, we found that species richness increased yield and interannual yield stability by reducing weed abundance. Stability was driven by yield as opposed to temporal variability of yield. Nitrogen fertilization increased yield but at the expense of yield stability. We show how relationships between diversity, species asynchrony, invasion, productivity, and stability observed in natural grasslands can extend into managed agricultural systems. Increasing bioenergy crop diversity can improve farmer economics via increased yield, reduced yield variability, and reduced inputs for weed control, thus promoting perennial vegetation on agricultural lands.

3.
J Equine Vet Sci ; 103: 103663, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34281645

RESUMO

Cover crops are commonly used to provide environmental benefits and can extend the grazing season, but have not been explored in horse pastures. The objectives of this research were to evaluate forage mass, forage nutrient composition, and preference of annual ryegrass, winter rye, berseem clover, purple top turnip, and daikon radish under horse grazing. Cover crops were seeded in monoculture and mixtures in August 2018 and 2019 as a randomized complete block with four replicates and grazed by four adult horses. Prior to grazing, forages were sampled to determine herbage and root mass and nutrient composition. After grazing, forages were visually assessed for the percentage of removal on a scale of 0 to 100% to estimate preference. Data was analyzed using an analysis of variance and linear regression; significance was set at P ≤ .05. Berseem clover was the lowest producing forage (590 to 1,869 kg ha-1 dry matter; P ≤.001), while minimal differences in herbage mass were observed among the other cover crops. All forages met digestible energy (>2.17 Mcal kg-1) and crude protein (>19%) requirements for idle, adult horses. Berseem clover was most preferred (>73% removal) while turnip and radish were the least preferred (<19% removal; P ≤.001). Winter rye and annual ryegrass in monoculture and when seeded with berseem clover were moderately preferred (20%-68% removal). Placing a priority on preference, berseem clover, annual ryegrass, and winter rye appear to be suitable cover crops to extend the grazing season in horse pastures.


Assuntos
Lolium , Trifolium , Animais , Produtos Agrícolas , Cavalos , Medicago , Estações do Ano
4.
Ecol Appl ; 31(6): e02363, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33899307

RESUMO

Diversity and nitrogen addition have positive relationships with plant productivity, yet climate-induced changes in water availability threaten to upend these established relationships. Using long-term data from three experiments in a mesic grassland (ranging from 17 to 34 yr of data), we tested how the effects of species richness and nitrogen addition on community-level plant productivity changed as a function of annual fluctuations in water availability using growing season precipitation and the Standardized Precipitation-Evapotranspiration Index (SPEI). While results varied across experiments, our findings demonstrate that water availability can magnify the positive effects of both biodiversity and nitrogen addition on productivity. These results suggest that productivity responses to anthropogenic species diversity loss and increasing nitrogen deposition could depend on precipitation regimes, highlighting the importance of testing interactions between multiple global change drivers.


Assuntos
Pradaria , Nitrogênio , Biodiversidade , Biomassa , Ecossistema , Água
5.
Bioscience ; 68(4): 294-304, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29662249

RESUMO

Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption.

6.
Annu Rev Plant Biol ; 67: 703-29, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-26789233

RESUMO

Historically, agroecosystems have been designed to produce food. Modern societies now demand more from food systems-not only food, fuel, and fiber, but also a variety of ecosystem services. And although today's farming practices are producing unprecedented yields, they are also contributing to ecosystem problems such as soil erosion, greenhouse gas emissions, and water pollution. This review highlights the potential benefits of perennial grains and oilseeds and discusses recent progress in their development. Because of perennials' extended growing season and deep root systems, they may require less fertilizer, help prevent runoff, and be more drought tolerant than annuals. Their production is expected to reduce tillage, which could positively affect biodiversity. End-use possibilities involve food, feed, fuel, and nonfood bioproducts. Fostering multidisciplinary collaborations will be essential for the successful integration of perennials into commercial cropping and food-processing systems.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível , Óleos de Plantas , Biodiversidade , Ecossistema , Fertilizantes , Solo
7.
PLoS One ; 8(4): e61209, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577208

RESUMO

Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha(-1). May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg(-1) and the concentration of plant N was 7.1 g kg(-1), both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic viability of harvesting conservation grasslands for bioenergy.


Assuntos
Biomassa , Conservação dos Recursos Naturais , Poaceae/metabolismo , Energia Renovável , Etanol/metabolismo , Minnesota , Modelos Teóricos , Nitrogênio/metabolismo , Solo/química , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...