Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Skeletal Radiol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940940

RESUMO

OBJECTIVE: Fatty infiltration of skeletal muscle (Myosteatosis) is associated with increased frailty, decreased muscle and mobility function, which seems fairly prevalent in multiple myeloma (MM) patients. This study aimed to determine the prognostic value of myosteatosis assessed by CT for progression-free survival (PFS) and overall survival (OS). MATERIALS AND METHODS: This IRB-approved cohort study included patients with newly diagnosed MM who were treated at a single university hospital and received CT at baseline. Geriatric assessment was performed via International Myeloma Working Group frailty score and Revised Myeloma Comorbidity Index. Myosteatosis was determined through measurement of paravertebral muscle radiodensity. Statistical analyses included uni- and multivariable Cox proportional hazard models and the Kaplan-Meier-method. RESULTS: A total of 226 newly diagnosed MM patients (median age: 65 years [range: 29-89], 63% males, mean BMI: 25 [14-42]) were analyzed. The prevalence of myosteatosis was 51%. Muscle radiodensity was significantly decreased in individuals with International Staging System stage III vs. I (p < 0.001), indicating higher fatty muscle infiltration in patients with advanced disease. Both PFS and OS were significantly decreased in patients with myosteatosis (PFS: median 32.0 months (95% CI 20.5.5-42.2) vs. 66.4 months without myosteatosis (95% CI 42.5-not reached), p < .001); OS: median 58.6 (95% CI 51.3-90.2) vs. not reached, p < .001). Myosteatosis remained an independent predictor of OS in multivariable analyses (HR: 1.98; 95%-CI: 1.20-3.27). CONCLUSION: Myosteatosis seems fairly prevalent in patients with newly diagnosed MM and associated with impaired overall survival. Prospective clinical trials are required to better understand the role of myosteatosis in MM patients.

2.
Skeletal Radiol ; 53(7): 1319-1332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38240761

RESUMO

OBJECTIVE: To qualitatively and quantitatively evaluate the 2.5-year MRI outcome after Matrix-associated autologous chondrocyte implantation (MACI) at the patella, reconstruction of the medial patellofemoral ligament (MPFL), and combined procedures. METHODS: In 66 consecutive patients (age 22.8 ± 6.4years) with MACI at the patella (n = 16), MPFL reconstruction (MPFL; n = 31), or combined procedures (n = 19) 3T MRI was performed 2.5 years after surgery. For morphological MRI evaluation WORMS and MOCART scores were obtained. In addition quantitative cartilage T2 and T1rho relaxation times were acquired. Several clinical scores were obtained. Statistical analyses included descriptive statistics, Mann-Whitney-U-tests and Pearson correlations. RESULTS: WORMS scores at follow-up (FU) were significantly worse after combined procedures (8.7 ± 4.9) than after isolated MACI (4.3 ± 3.6, P = 0.005) and after isolated MPFL reconstruction (5.3 ± 5.7, P = 0.004). Bone marrow edema at the patella in the combined group was the only (non-significantly) worsening WORMS parameter from pre- to postoperatively. MOCART scores were significantly worse in the combined group than in the isolated MACI group (57 ± 3 vs 88 ± 9, P < 0.001). Perfect defect filling was achieved in 26% and 69% of cases in the combined and MACI group, respectively (P = 0.031). Global and patellar T2 values were higher in the combined group (Global T2: 34.0 ± 2.8ms) and MACI group (35.5 ± 3.1ms) as compared to the MPFL group (31.1 ± 3.2ms, P < 0.05). T2 values correlated significantly with clinical scores (P < 0.005). Clinical Cincinnati scores were significantly worse in the combined group (P < 0.05). CONCLUSION: After combined surgery with patellar MACI and MPFL reconstruction inferior MRI outcomes were observed than after isolated procedures. Therefore, patients with need for combined surgery may be at particular risk for osteoarthritis.


Assuntos
Imageamento por Ressonância Magnética , Patela , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Resultado do Tratamento , Patela/diagnóstico por imagem , Patela/cirurgia , Adulto , Condrócitos/transplante , Transplante Autólogo , Adulto Jovem , Articulação Patelofemoral/diagnóstico por imagem , Articulação Patelofemoral/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Ligamentos Articulares/diagnóstico por imagem , Ligamentos Articulares/cirurgia , Adolescente
3.
Open Access J Sports Med ; 14: 29-46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252646

RESUMO

Purpose: Ankle injuries are frequent sports injuries. Despite optimizing treatment strategies during recent years, the percentage of chronification following an ankle sprain remains high. The purpose of this review article is, to highlight current epidemiological, clinical and novel advanced cross-sectional imaging trends that may help to evaluate ankle sprain injuries. Methods: Systematic PubMed literature research. Identification and review of studies (i) analyzing and describing ankle sprain and (ii) focusing on advanced cross-sectional imaging techniques at the ankle. Results: The ankle is one of the most frequently injured body parts in sports. During the COVID-19 pandemic, there was a change in sporting behavior and sports injuries. Ankle sprains account for about 16-40% of the sports-related injuries. Novel cross-sectional imaging techniques, including Compressed Sensing MRI, 3D MRI, ankle MRI with traction or plantarflexion-supination, quantitative MRI, CT-like MRI, CT arthrography, weight-bearing cone beam CT, dual-energy CT, photon-counting CT, and projection-based metal artifact reduction CT may be introduced for detection and evaluation of specific pathologies after ankle injury. While simple ankle sprains are generally treated conservatively, unstable syndesmotic injuries may undergo stabilization using suture-button-fixation. Minced cartilage implantation is a novel cartilage repair technique for osteochondral defects at the ankle. Conclusion: Applications and advantages of different cross-sectional imaging techniques at the ankle are highlighted. In a personalized approach, optimal imaging techniques may be chosen that best detect and delineate structural ankle injuries in athletes.

4.
Semin Musculoskelet Radiol ; 27(3): 283-292, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37230128

RESUMO

Bone stress injuries (BSIs) are a frequent finding in athletes, particularly of the foot and ankle. A BSI is caused by recurring microtrauma to the cortical or trabecular bone exceeding the repair capacity of normal bone. The most frequent fractures at the ankle are low risk, characterized by a low risk for nonunion. These include the posteromedial tibia, the calcaneus, and the metatarsal diaphysis. High-risk stress fractures have a higher risk for nonunion and need more aggressive treatment. Examples are the medial malleolus, navicular bone, and the base of the second and fifth metatarsal bone.Imaging features depend on the primary involvement of cortical versus trabecular bone. Conventional radiographs may remain normal up to 2 to 3 weeks. For cortical bone, early signs of BSIs are a periosteal reaction or the "gray cortex sign," followed by cortical thickening and fracture line depiction. In trabecular bone, a sclerotic dense line may be seen. Magnetic resonance imaging enables early detection of BSIs and can differentiate between a stress reaction and a fracture. We review typical anamnestic/clinical findings, epidemiology and risk factors, imaging characteristics, and findings at typical locations of BSIs at the foot and ankle that may help guide treatment strategy and patient recovery.


Assuntos
Traumatismos do Pé , Fraturas de Estresse , Humanos , Tornozelo , Fraturas de Estresse/diagnóstico por imagem , Extremidade Inferior , Articulação do Tornozelo , Radiografia , Traumatismos do Pé/diagnóstico por imagem
5.
Theranostics ; 13(5): 1594-1606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056570

RESUMO

Rationale: To establish a spatially exact co-registration procedure between in vivo multiparametric magnetic resonance imaging (mpMRI) and (immuno)histopathology of soft tissue sarcomas (STS) to identify imaging parameters that reflect radiation therapy response of STS. Methods: The mpMRI-Protocol included diffusion-weighted (DWI), intravoxel-incoherent motion (IVIM), and dynamic contrast-enhancing (DCE) imaging. The resection specimen was embedded in 6.5% agarose after initial fixation in formalin. To ensure identical alignment of histopathological sectioning and in vivo imaging, an ex vivo MRI scan of the specimen was rigidly co-registered with the in vivo mpMRI. The deviating angulation of the specimen to the in vivo location of the tumor was determined. The agarose block was trimmed accordingly. A second ex vivo MRI in a dedicated localizer with a 4 mm grid was performed, which was matched to a custom-built sectioning machine. Microtomy sections were stained with hematoxylin and eosin. Immunohistochemical staining was performed with anti-ALDH1A1 antibodies as a radioresistance and anti-MIB1 antibodies as a proliferation marker. Fusion of the digitized microtomy sections with the in vivo mpMRI was accomplished through nonrigid co-registration to the in vivo mpMRI. Co-registration accuracy was qualitatively assessed by visual assessment and quantitatively evaluated by computing target registration errors (TRE). Results: The study sample comprised nine tumor sections from three STS patients. Visual assessment after nonrigid co-registration showed a strong morphological correlation of the histopathological specimens with ex vivo MRI and in vivo mpMRI after neoadjuvant radiation therapy. Quantitative assessment of the co-registration procedure using TRE analysis of different pairs of pathology and MRI sections revealed highly accurate structural alignment, with a total median TRE of 2.25 mm (histology - ex vivo MRI), 2.22 mm (histology - in vivo mpMRI), and 2.02 mm (ex vivo MRI - in vivo mpMRI). There was no significant difference between TREs of the different pairs of sections or caudal, middle, and cranial tumor parts, respectively. Conclusion: Our initial results show a promising approach to obtaining accurate co-registration between histopathology and in vivo MRI for STS. In a larger cohort of patients, the method established here will enable the prospective identification and validation of in vivo imaging biomarkers for radiation therapy response prediction and monitoring in STS patients via precise molecular and cellular correlation.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Estudos Prospectivos , Sefarose , Imageamento por Ressonância Magnética/métodos , Sarcoma/diagnóstico por imagem , Sarcoma/radioterapia
6.
J Cachexia Sarcopenia Muscle ; 14(3): 1249-1258, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36892104

RESUMO

BACKGROUND: Intervertebral disc degeneration (IVDD) may be linked to dysregulations of skeletal muscle glucose metabolism and fatty alterations of muscle composition (Myosteatosis). Our aim was to evaluate the different associations of magnetic resonance imaging (MRI)-based paravertebral myosteatosis with lumbar disc degeneration in individuals with impaired glucose metabolism and normoglycaemic controls. METHODS: In total, 304 individuals (mean age: 56.3 ± 9.1 years, 53.6% male sex, mean body mass index [BMI]: 27.6 ± 4.7 kg/m2 ) from a population-based cohort study who underwent 3-Tesla whole-body chemical-shift-encoded (six echo times) and T2-weighted single-shot-fast-spin-echo MRI were included. Lumbar disc degeneration was assessed at motion segments L1 to L5, categorized according to the Pfirrmann score and defined as Pfirrmann grade > 2 and/or disc bulging/herniation on at least one segment. Fat content of the autochthonous back muscles and the quadratus lumborum muscle was quantified as proton density fat fraction (PDFFmuscle ). Logistic regression models adjusted for age, sex, BMI and regular physical activity were calculated to evaluate the association between PDFFmuscle and outcome IVDD. RESULTS: The overall prevalence of IVDD was 79.6%. There was no significant difference in the prevalence or severity distribution of IVDD between participants with or without impaired glucose metabolism (77.7% vs. 80.7%, P = 0.63 and P = 0.71, respectively). PDFFmuscle was significantly and positively associated with an increased risk for the presence of IVDD in participants with impaired glycaemia when adjusted for age, sex and BMI (PDFFautochthonous back muscles : odds ratio [OR] 2.16, 95% confidence interval [CI] [1.09, 4.3], P = 0.03; PDFFquadratus lumborum : OR 2.01, 95% CI [1.04, 3.85], P = 0.04). After further adjustment for regular physical activity, the results attenuated, albeit approaching statistical significance (PDFFautochthonous back muscles : OR 1.97, 95% CI [0.97, 3.99], P = 0.06; PDFFquadratus lumborum : OR 1.86, 95% CI [0.92, 3.76], P = 0.09). No significant associations were shown in healthy controls (PDFFautochthonous back muscles : OR 0.62, 95% CI [0.34, 1.14], P = 0.13; PDFFquadratus lumborum : OR 1.06, 95% CI [0.6, 1.89], P = 0.83). CONCLUSIONS: Paravertebral myosteatosis is positively associated with intervertebral disc disease in individuals with impaired glucose metabolism, independent of age, sex and BMI. Regular physical activity may confound these associations. Longitudinal studies will help to better understand the pathophysiological role of skeletal muscle in those with concomitant disturbed glucose haemostasis and intervertebral disc disease, as well as possible underlying causal relationships.


Assuntos
Degeneração do Disco Intervertebral , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/epidemiologia , Degeneração do Disco Intervertebral/complicações , Estudos de Coortes , Imageamento por Ressonância Magnética/métodos , Glucose
7.
J Magn Reson Imaging ; 57(2): 611-619, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35611813

RESUMO

BACKGROUND: T1ρ mapping has been proposed for the detection of early cartilage degeneration associated with chronic ankle instability (CAI). However, there are limited data surrounding the influence of ankle loading on T1ρ relaxation. PURPOSE: To evaluate T1ρ relaxation times of talar cartilage, as an indicator of early degenerative changes, associated with CAI and to investigate the influence of acute axial in situ loading on T1ρ values in CAI patients and healthy controls. STUDY TYPE: Prospective. SUBJECTS: A total of 9 patients (age = 21.8 ± 2.5 years, male/female = 2/7) with chronic ankle instability and 18 healthy control subjects (age = 22.8 ± 3.6 years, male/female = 5/13). FIELD STRENGTH: 3 T. SEQUENCE: 3D gradient echo fast low-angle shot (FLASH) sequence augmented with a variable spin-lock preparation period. ASSESSMENT: Ankle T1ρ mapping was performed without and with axial loading of 500 N. The talar cartilage was segmented in five coronal slices covering the central talocrural joint. Median talar T1ρ values were separately calculated for the medial and lateral facets. STATISTICAL TESTS: Mann-Whitney U and Wilcoxon signed-rank tests, significance level: P < 0.05. RESULTS: For the combined cohorts, the statistical analysis yielded significantly lower T1ρ values with loading compared to the no-load measurement for both the lateral (no load: [51.0 ± 4.0] msec, load: [49.5 ± 5.4] msec) as well as the medial compartment (no load: [50.0 ± 5.4] msec, load: [47.8 ± 6.8] msec). In the unloaded scans, the CAI patients showed significantly increased talar T1ρ values ([53.0 ± 7.4] mse ) compared to the healthy control subjects ([48.8 ± 4.1] msec) in the medial compartment. DATA CONCLUSION: Increased talar T1ρ relaxation times in CAI patients compared to healthy controls suggest that T1ρ relaxation is a sensitive biomarker for CAI-induced early-stage cartilage degeneration. However, the load-induced T1ρ change did not prove to be a viable marker for the altered biomechanical properties of the hyaline talar cartilage. LEVEL OF EVIDENCE: 2 LEVEL OF EFFICACY: Stage 2.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Instabilidade Articular , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Cartilagem Articular/diagnóstico por imagem , Estudos Prospectivos , Tornozelo , Instabilidade Articular/diagnóstico por imagem , Imageamento por Ressonância Magnética
8.
Eur Radiol ; 33(3): 1501-1512, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36241920

RESUMO

OBJECTIVE: To assess the association of lumbar bone marrow adipose tissue fat fraction (BMAT-FF) and paraspinal muscle proton density fat fraction (PDFF) and their interplay with intervertebral disc degeneration (IVDD). METHODS: In this retrospective cross-sectional study based on a prospective population-based cohort, BMAT-FF and PDFF of asymptomatic individuals were calculated based on 3T-MRI dual-echo and multi-echo Dixon VIBE sequences. IVDD was assessed at motion segments L1 to L5 and dichotomized based on Pfirrmann grade ≥ 4 and/or presence of other severe degenerative changes or spinal abnormalities at least at one segment. Pearson's correlation coefficients were calculated for BMAT-FF and PDFF. Univariable and multivariable logistic regression models for IVDD were calculated. RESULTS: Among 335 participants (mean age: 56.2 ± 9.0 years, 43.3% female), the average BMI was 27.7 ± 4.5 kg/m2 and the prevalence of IVDD was high (69.9%). BMAT-FF and PDFF were significantly correlated (r = 0.31-0.34; p < 0.001). The risk for IVDD increased with higher PDFF (OR = 1.45; CI 1.03, 2.04) and BMAT-FF (OR = 1.56; CI 1.16, 2.11). Pairwise combinations of PDFF and BMAT-FF quartiles revealed a lower risk for IVDD in individuals in the lowest BMAT-FF and PDFF quartile (OR = 0.21; CI 0.1, 0.48). Individuals in the highest BMAT-FF and PDFF quartile showed an increased risk for IVDD (OR = 5.12; CI 1.17, 22.34) CONCLUSION: Lumbar BMAT-FF and paraspinal muscle PDFF are correlated and represent both independent and additive risk factors for IVDD. Quantitative MRI measurements of paraspinal myosteatosis and vertebral bone marrow fatty infiltration may serve as imaging biomarkers to assess the individual risk for IVDD. KEY POINTS: • Fat composition of the lumbar vertebral bone marrow is positively correlated with paraspinal skeletal muscle fat. • Higher fat-fractions of lumbar vertebral bone marrow and paraspinal muscle are both independent as well as additive risk factors for intervertebral disc degeneration. • Quantitative magnetic resonance imaging measurements of bone marrow and paraspinal muscle may serve as imaging biomarkers for intervertebral disc degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Degeneração do Disco Intervertebral/diagnóstico por imagem , Estudos Retrospectivos , Estudos Prospectivos , Medula Óssea/diagnóstico por imagem , Músculos Paraespinais/diagnóstico por imagem , Estudos Transversais , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tecido Adiposo/diagnóstico por imagem , Biomarcadores , Prótons
9.
Eur Radiol ; 33(3): 1565-1574, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36307552

RESUMO

OBJECTIVES: Quantitative MRI techniques, such as diffusion microstructure imaging (DMI), are increasingly applied for advanced tissue characterization. We determined its value in rotator cuff (RC) muscle imaging by studying the association of DMI parameters to isometric strength and fat fraction (FF). METHODS: Healthy individuals prospectively underwent 3T-MRI of the shoulder using DMI and chemical shift encoding-based water-fat imaging. RC muscles were segmented and quantitative MRI metrics (V-ISO, free fluid; V-intra, compartment inside of muscle fibers; V-extra, compartment outside of muscle fibers, and FF) were extracted. Isometric shoulder strength was quantified using specific clinical tests. Sex-related differences were assessed with Student's t. Association of DMI-metrics, FF, and strength was tested. A factorial two-way ANOVA was performed to compare the main effects of sex and external/internal strength-ratio and their interaction effects on quantitative imaging parameters ratios of infraspinatus/subscapularis. RESULTS: Among 22 participants (mean age: 26.7 ± 3.1 years, 50% female, mean BMI: 22.6 ± 1.9 kg/m2), FF of the individual RC muscles did not correlate with strength or DMI parameters (all p > 0.05). Subjects with higher V-intra (r = 0.57 to 0.87, p < 0.01) and lower V-ISO (r = -0.6 to -0.88, p < 0.01) had higher internal and external rotation strength. Moreover, V-intra was higher and V-ISO was lower in all RC muscles in males compared to female subjects (all p < 0.01). There was a sex-independent association of external/internal strength-ratio with the ratio of V-extra of infraspinatus/subscapularis (p = 0.02). CONCLUSIONS: Quantitative DMI parameters may provide incremental information about muscular function and microstructure in young athletes and may serve as a potential biomarker. KEY POINTS: • Diffusion microstructure imaging was successfully applied to non-invasively assess the microstructure of rotator cuff muscles in healthy volunteers. • Sex-related differences in the microstructural composition of the rotator cuff were observed. • Muscular microstructural metrics correlated with rotator cuff strength and may serve as an imaging biomarker of muscular integrity and function.


Assuntos
Radiologia , Lesões do Manguito Rotador , Articulação do Ombro , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Ombro/diagnóstico por imagem , Manguito Rotador/diagnóstico por imagem , Articulação do Ombro/diagnóstico por imagem , Lesões do Manguito Rotador/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
10.
Cartilage ; 13(3): 19476035221093061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35993371

RESUMO

OBJECTIVE: The aim of this study was to longitudinally determine the prognostic value of early postoperative quantitative 3T-MRI (magnetic resonance imaging) parameters of subchondral bone marrow for 2-year clinical and MRI outcome after matrix-associated autologous chondrocyte implantation (MACI) with autologous bone grafting (ABG) at the knee. DESIGN: Consecutive subjects who received MACI with ABG for treatment of focal osteochondral defects received MRI follow-up 3, 6, 12, and 24 months postoperatively. Quantitative MRI included bone marrow edema-like lesion (BMEL) volume measurements and single-voxel magnetic resonance spectroscopy (MRS; n = 9) of the subchondral bone marrow. At 2-year follow-up, morphological MRI outcome included MOCART (magnetic resonance observation of cartilage repair tissue) 2.0 scores. Clinical outcomes were assessed using Lysholm scores. RESULTS: Among a total of 18 subjects (mean age: 28.7 ± 8.4 years, n = 14 males) with defects at the medial or lateral (n = 15 and n = 3, respectively) condyle, mean BMEL volume decreased from 4.9 cm3 at 3 months to 2.0 cm3 at 2-year follow-up (P = 0.040). MRS-based bone marrow water T2 showed a decrease from 20.7 ms at 1-year follow-up to 16.8 ms at 2-year follow-up (P = 0.040). Higher BMEL volume at 6 months correlated with lower 2-year Lysholm (R = -0.616, P = 0.015) and MOCART 2.0 scores (R = -0.567, P = 0.027). Larger early postoperative BMEL volumes at 3 months (R = -0.850, P = 0.007) and 6 months (R = -0.811, P = 0.008) correlated with lower MRS-based unsaturated lipid fractions at 2-year follow-up. Furthermore, patients with early postoperative bony defects showed worse MOCART 2.0 (P = 0.044) and Lysholm scores (P = 0.017) after 24 months. CONCLUSION: Low subchondral BMEL volume and optimal restoration of the subchondral bone at early postoperative time points predict better 2-year clinical and MRI outcomes after MACI with ABG.


Assuntos
Doenças da Medula Óssea , Cartilagem Articular , Adulto , Medula Óssea/diagnóstico por imagem , Transplante Ósseo/métodos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Condrócitos/transplante , Edema , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
11.
Eur Radiol ; 32(9): 6247-6257, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35396665

RESUMO

OBJECTIVES: To develop and validate machine learning models to distinguish between benign and malignant bone lesions and compare the performance to radiologists. METHODS: In 880 patients (age 33.1 ± 19.4 years, 395 women) diagnosed with malignant (n = 213, 24.2%) or benign (n = 667, 75.8%) primary bone tumors, preoperative radiographs were obtained, and the diagnosis was established using histopathology. Data was split 70%/15%/15% for training, validation, and internal testing. Additionally, 96 patients from another institution were obtained for external testing. Machine learning models were developed and validated using radiomic features and demographic information. The performance of each model was evaluated on the test sets for accuracy, area under the curve (AUC) from receiver operating characteristics, sensitivity, and specificity. For comparison, the external test set was evaluated by two radiology residents and two radiologists who specialized in musculoskeletal tumor imaging. RESULTS: The best machine learning model was based on an artificial neural network (ANN) combining both radiomic and demographic information achieving 80% and 75% accuracy at 75% and 90% sensitivity with 0.79 and 0.90 AUC on the internal and external test set, respectively. In comparison, the radiology residents achieved 71% and 65% accuracy at 61% and 35% sensitivity while the radiologists specialized in musculoskeletal tumor imaging achieved an 84% and 83% accuracy at 90% and 81% sensitivity, respectively. CONCLUSIONS: An ANN combining radiomic features and demographic information showed the best performance in distinguishing between benign and malignant bone lesions. The model showed lower accuracy compared to specialized radiologists, while accuracy was higher or similar compared to residents. KEY POINTS: • The developed machine learning model could differentiate benign from malignant bone tumors using radiography with an AUC of 0.90 on the external test set. • Machine learning models that used radiomic features or demographic information alone performed worse than those that used both radiomic features and demographic information as input, highlighting the importance of building comprehensive machine learning models. • An artificial neural network that combined both radiomic and demographic information achieved the best performance and its performance was compared to radiology readers on an external test set.


Assuntos
Neoplasias Ósseas , Aprendizado de Máquina , Adolescente , Adulto , Neoplasias Ósseas/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Radiografia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Raios X , Adulto Jovem
12.
Magn Reson Med ; 87(6): 2685-2696, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35037292

RESUMO

PURPOSE: To accelerate the Pointwise Encoding Time Reduction with Radial Acquisition (PETRA) sequence using compressed sensing while preserving the image quality for high-resolution MRI of tissue with ultra-short T2∗ values. METHODS: Compressed sensing was introduced in the PETRA sequence (csPETRA) to accelerate the time-consuming single point acquisition of the k-space center data. Random undersampling was applied to achieve acceleration factors up to Acc = 32. Phantom and in vivo images of the knee joint of six volunteers were measured at 3T using csPETRA sequence with Acc = 4, 8, 12, 16, 24, and 32. Images were compared against fully sampled PETRA data (Acc = 1) for structural similarity and normalized-mean-square-error. Qualitative and semi-quantitative analyses were performed to assess the effect of the acceleration on image artifacts, image quality, and delineation of anatomical structures at the knee. RESULTS: Even at high acceleration factors of Acc = 16 no aliasing artifacts were observed, and the anatomical details were preserved compared with the fully sampled data. The normalized-mean-square-error was less than 1% for Acc = 16, in which single point imaging acquisition time was reduced from 165 to 10 s, reducing the total scan time from 7.8 to 5.2 min. Semi-quantitative analyses suggest that Acc = 16 yields comparable diagnostic quality as the fully sampled data for knee imaging at a scan time of 5.2 min. CONCLUSION: csPETRA allows for ultra-short T2∗ imaging of the knee joint in clinically acceptable scan times while maintaining the image quality of original non-accelerated PETRA sequence.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
13.
Skeletal Radiol ; 51(3): 535-547, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34218322

RESUMO

OBJECTIVE: To qualitatively and quantitatively evaluate the 2-year magnetic resonance imaging (MRI) outcome after MPFL reconstruction at the knee and to assess MRI-based risk factors that predispose for inferior clinical and imaging outcomes. MATERIALS AND METHODS: A total of 31 patients with MPFL reconstruction were included (22 ± 6 years, 10 female). MRI was performed preoperatively in 21/31 patients. Two-year follow-up MRI included quantitative cartilage T2 and T1rho relaxation time measurements at the ipsilateral and contralateral knee. T2relative was calculated as T2patellofemoral/T2femorotibial. Morphological evaluation was conducted via WORMS scores. Patellar instability parameters and clinical scores were obtained. Statistical analyses included descriptive statistics, t-tests, multivariate regression models, and correlation analyses. RESULTS: Two years after MPFL reconstruction, all patellae were clinically stable. Mean total WORMS scores improved significantly from baseline to follow-up (mean difference ± SEM, - 4.0 ± 1.3; P = 0.005). As compared to patients with no worsening of WORMS subscores over time (n = 5), patients with worsening of any WORMS subscore (n = 16) had lower trochlear depth, lower facetal ratio, higher tibial-tuberosity to trochlear groove (TTTG) distance, and higher postoperative lateral patellar tilt (P < 0.05). T2relative was higher at the ipsilateral knee (P = 0.010). T2relative was associated with preoperatively higher patellar tilt (P = 0.021) and higher TTTG distance (P = 0.034). TTTG distance, global T2 values, and WORMS progression correlated with clinical outcomes (P < 0.05). CONCLUSION: MPFL reconstruction is an optimal treatment strategy to restore patellar stability. Still, progressive knee joint degeneration and patellofemoral cartilage matrix degeneration may be observed, with patellar instability MRI parameters representing particular risk factors.


Assuntos
Instabilidade Articular , Luxação Patelar , Articulação Patelofemoral , Feminino , Humanos , Instabilidade Articular/diagnóstico por imagem , Instabilidade Articular/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Ligamentos Articulares , Imageamento por Ressonância Magnética , Articulação Patelofemoral/diagnóstico por imagem , Articulação Patelofemoral/cirurgia
14.
Skeletal Radiol ; 51(4): 737-745, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34302499

RESUMO

The estimation of growth rate of lytic bone tumors based on conventional radiography has been extensively studied. While benign tumors exhibit slow growth, malignant tumors are more likely to show fast growth. The most frequently used algorithm for grading of growth rate on conventional radiography was published by Gwilym Lodwick. Based on the evaluation of the four descriptors (1) type of bone destruction (including the subdescriptor "margin" for geographic lesions), (2) penetration of cortex, (3) presence of a sclerotic rim, and (4) expanded shell, an overall growth grade (IA, IB, IC, II, III) can be assigned, with higher grade representing faster tumor growth. In this article, we provide an easy-to-use decision tree of Lodwick's original grading algorithm, suitable for teaching of students and residents. Subtleties of the grading algorithm and potential pitfalls in clinical practice are explained and illustrated. Exemplary conventional radiographs provided for each descriptor in the decision tree may be used as a guide and atlas for assisting in evaluation of individual features in daily clinical practice.


Assuntos
Neoplasias Ósseas , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Árvores de Decisões , Humanos , Radiografia
15.
Radiology ; 301(2): 398-406, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34491126

RESUMO

Background An artificial intelligence model that assesses primary bone tumors on radiographs may assist in the diagnostic workflow. Purpose To develop a multitask deep learning (DL) model for simultaneous bounding box placement, segmentation, and classification of primary bone tumors on radiographs. Materials and Methods This retrospective study analyzed bone tumors on radiographs acquired prior to treatment and obtained from patient data from January 2000 to June 2020. Benign or malignant bone tumors were diagnosed in all patients by using the histopathologic findings as the reference standard. By using split-sample validation, 70% of the patients were assigned to the training set, 15% were assigned to the validation set, and 15% were assigned to the test set. The final performance was evaluated on an external test set by using geographic validation, with accuracy, sensitivity, specificity, and 95% CIs being used for classification, the intersection over union (IoU) being used for bounding box placements, and the Dice score being used for segmentations. Results Radiographs from 934 patients (mean age, 33 years ± 19 [standard deviation]; 419 women) were evaluated in the internal data set, which included 667 benign bone tumors and 267 malignant bone tumors. Six hundred fifty-four patients were in the training set, 140 were in the validation set, and 140 were in the test set. One hundred eleven patients were in the external test set. The multitask DL model achieved 80.2% (89 of 111; 95% CI: 72.8, 87.6) accuracy, 62.9% (22 of 35; 95% CI: 47, 79) sensitivity, and 88.2% (67 of 76; CI: 81, 96) specificity in the classification of bone tumors as malignant or benign. The model achieved an IoU of 0.52 ± 0.34 for bounding box placements and a mean Dice score of 0.60 ± 0.37 for segmentations. The model accuracy was higher than that of two radiologic residents (71.2% and 64.9%; P = .002 and P < .001, respectively) and was comparable with that of two musculoskeletal fellowship-trained radiologists (83.8% and 82.9%; P = .13 and P = .25, respectively) in classifying a tumor as malignant or benign. Conclusion The developed multitask deep learning model allowed for accurate and simultaneous bounding box placement, segmentation, and classification of primary bone tumors on radiographs. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Carrino in this issue.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia/métodos , Adulto , Osso e Ossos/diagnóstico por imagem , Feminino , Humanos , Masculino , Estudos Retrospectivos
16.
Am J Sports Med ; 49(2): 476-486, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33427489

RESUMO

BACKGROUND: Matrix-associated autologous chondrocyte implantation (MACI) with autologous bone grafting (ABG) is an effective surgical treatment for osteochondral defects. Quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as noninvasive biomarkers to assess the biochemical composition of cartilage repair tissue. PURPOSE: To evaluate the association of quantitative MRI parameters of cartilage repair tissue and subchondral bone marrow with magnetic resonance morphologic and clinical outcomes after MACI with ABG of the knee. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: Qualitative and quantitative 3 T MRI of the knee was performed in 21 patients (16 male) at 2.5 years after MACI with ABG at the medial (18/21) or lateral (3/21) femoral condyle for the treatment of osteochondral defects. Morphologic MRI sequences were assessed using MOCART (magnetic resonance observation of cartilage repair tissue) 2.0 scores. T2 relaxation time measurements for the assessment of cartilage repair tissue (CRT2) were obtained. Single-voxel magnetic resonance spectroscopy was performed in underlying subchondral bone marrow (BM) and at both central femoral condyles. The presence of pain and Tegner scores were noted. Statistical analyses included Student t tests, correlation analyses, and multivariate regression models. RESULTS: The mean defect size was 4.9 ± 1.9 cm2. At a follow-up of 2.5 ± 0.3 years, 9 of 21 patients were asymptomatic. Perfect defect filling was achieved in 66.7% (14/21) of patients. MOCART 2.0 scores (74.1 ± 18.4) did not indicate pain (68.3 ± 19.0 [pain] vs 81.7 ± 15.4 [no pain]; P = .102). However, knee pain was present in 85.7% (6/7) of patients with deep bony defects (odds ratio, 8.0; P = .078). Relative CRT2 was higher in hypertrophic cartilage repair tissue than in repair tissue with normal filling (1.54 ± 0.42 vs 1.13 ± 0.21, respectively; P = .022). The underlying BM edema-like lesion (BMEL) volume was larger in patients with underfilling compared with patients with perfect defect filling (1.87 ± 1.32 vs 0.31 ± 0.51 cm3, respectively; P = .002). Patients with severe pain showed a higher BMEL volume (1.2 ± 1.3 vs 0.2 ± 0.4 cm3, respectively; P = .046) and had a higher BM water fraction (26.0% ± 12.3% vs 8.6% ± 8.1%, respectively; P = .026) than did patients without pain. CONCLUSION: Qualitative and quantitative MRI parameters including the presence of subchondral defects, CRT2, BMEL volume, and BM water fraction were correlated with cartilage repair tissue quality and clinical symptoms. Therefore, the integrity of subchondral bone was associated with outcomes after osteochondral transplantation.


Assuntos
Transplante Ósseo , Cartilagem Articular , Condrócitos/transplante , Articulação do Joelho , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Feminino , Seguimentos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética , Masculino , Transplante Autólogo
17.
Skeletal Radiol ; 50(6): 1177-1188, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33169220

RESUMO

OBJECTIVE: To prospectively assess the evolution of postoperative MRI findings in asymptomatic patients after total hip arthroplasty (THA) over 24 months (mo). METHODS: This prospective cohort study included 9 asymptomatic patients (56.7 ± 15.0 years) after THA. Metal artifact-reduced 1.5-T MRI was performed at 3, 6, 12, and 24 mo after surgery. The femoral stem and acetabular cup were assessed by two readers for bone marrow edema (BME), periprosthetic bone resorption, and periosteal edema in addition to periarticular soft tissue edema and joint effusion. RESULTS: BME was common around the femoral stem in all Gruen zones after 3 mo (range: 50-100%) and 6 mo (range: 33-100%) and in the acetabulum in DeLee and Charnley zone II after 3 mo (100%) and 6 mo (33%). BME decreased substantially after 12 mo (range: 0-78%) and 24 mo (range: 0-50%), may however persist in particular in Gruen zones 1 + 7. Periosteal edema along the stem was common 3 mo postoperatively (range: 63-75%) and rare after 24 mo: 13% only in Gruen zones 2 and 5. Twelve months and 24 mo postoperatively, periprosthetic bone resorption was occasionally present around the femoral stem (range: 11-33% and 13-38%, respectively). Soft tissue edema occurred exclusively along the surgical access route after 3 mo (100%) and 6 mo (89%) and never at 12 mo or 24 mo (0%). CONCLUSION: Around the femoral stem, BME (33-100%) and periosteal edema (0-75%) are common until 6 mo after THA, decreasing substantially in the following period, may however persist up to 24 mo (BME: 0-50%; periosteal edema: 0-13%) in few non-adjoining Gruen zones. Soft tissue edema along the surgical access route should have disappeared 12 mo after surgery.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Artefatos , Densidade Óssea , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos
18.
Rofo ; 193(3): 262-275, 2021 Mar.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-33152784

RESUMO

BACKGROUND: Chondrogenic tumors are the most frequent primary bone tumors. Malignant chondrogenic tumors represent about one quarter of malignant bone tumors. Benign chondrogenic bone tumors are frequent incidental findings at imaging. Radiological parameters may be helpful for identification, characterization, and differential diagnosis. METHODS: Systematic PubMed literature research. Identification and review of studies analyzing and describing imaging characteristics of chondrogenic bone tumors. RESULTS AND CONCLUSIONS: The 2020 World Health Organization (WHO) classification system differentiates between benign, intermediate (locally aggressive or rarely metastasizing), and malignant chondrogenic tumors. On imaging, typical findings of differentiated chondrogenic tumors are lobulated patterns with a high signal on T2-weighted magnetic resonance imaging (MRI) and ring- and arc-like calcifications on conventional radiography and computed tomography (CT). Depending on the entity, the prevalence of this chondrogenic pattern differs. While high grade tumors may be identified due to aggressive imaging patterns, the differentiation between benign and intermediate grade chondrogenic tumors is challenging, even in an interdisciplinary approach. KEY POINTS: · The WHO defines benign, intermediate, and malignant chondrogenic bone tumors. · Frequent benign tumors: osteochondroma and enchondroma; Frequent malignant tumor: conventional chondrosarcoma. · Differentiation between enchondroma versus low-grade chondrosarcoma is challenging for radiologists and pathologists. · Pain, deep scalloping, cortical destruction, bone expansion, soft tissue component: favor chondrosarcoma. · Potential malignant transformation of osteochondroma: progression after skeletal maturity, cartilage cap thickness (> 2 cm adult; > 3 cm child). · Potentially helpful advanced imaging methods: Dynamic MRI, texture analysis, FDG-PET/CT. CITATION FORMAT: · Engel H, Herget GW, Füllgraf H et al. Chondrogenic Bone Tumors: The Importance of Imaging Characteristics. Fortschr Röntgenstr 2021; 193: 262 - 274.


Assuntos
Neoplasias Ósseas , Adulto , Neoplasias Ósseas/diagnóstico por imagem , Criança , Condroma/diagnóstico por imagem , Condrossarcoma/diagnóstico por imagem , Humanos , Osteocondroma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
19.
Am J Sports Med ; 48(14): 3573-3585, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33200942

RESUMO

BACKGROUND: Quantitative magnetic resonance (MR) imaging techniques are established for evaluation of cartilage composition and trabecular bone microstructure at the knee. It remains unclear whether quantitative MR parameters predict the midterm morphological outcome after matrix-associated chondrocyte implantation (MACI) with autologous bone grafting (ABG). PURPOSE: To assess longitudinal changes and associations of the biochemical composition of cartilage repair tissue, the subchondral bone architecture, and morphological knee joint abnormalities on 3-T MR imaging after MACI with ABG at the knee. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: Knees of 18 patients (28.7 ± 8.4 years [mean ± SD]; 5 women) were examined preoperatively and 3, 6, 12, and 24 months after MACI and ABG using 3-T MR imaging. Cartilage composition was assessed using T2 relaxation time measurements. Subchondral bone microstructure was quantified using a 3-dimensional phase-cycled balanced steady-state free precision sequence. Trabecular bone parameters were calculated using a dual threshold algorithm (apparent bone fraction, apparent trabecular number, and apparent trabecular separation). Morphological abnormalities were assessed using the MOCART (magnetic resonace observation of cartilage repair tissue) score, the WORMS (Whole-Organ Magnetic Resonance Imaging Score), and the CROAKS (Cartilage Repair Osteoarthritis Knee Score). Clinical symptoms were assessed using the Tegner activity and Lysholm knee scores. Statistical analyses were performed by using multiple linear regression analysis. RESULTS: Total WORMS (P = .02) and MOCART (P = .001) scores significantly improved over 24 months after MACI. Clinical symptoms were significantly associated with the presence of bone marrow edema pattern abnormalities 24 months after surgery (P = .035). Overall there was a good to excellent radiological outcome found after 24 months (MOCART score, 88.8 ± 10.1). Cartilage repair T2 values significantly decreased between 12 and 24 months after MACI (P = .009). Lower global T2 values after 3 months were significantly associated with better MOCART scores after 24 months (P = .04). Moreover, trabecular bone parameters after 3 months were significantly associated with the total WORMS after 24 months (apparent bone fraction, P = .048; apparent trabecular number, P = .013; apparent trabecular separation, P = .013). CONCLUSION: After MACI with ABG, early postoperative quantitative assessment of biochemical composition of cartilage and microstructure of subchondral bone may predict the outcome after 24 months. The perioperative global joint cartilage matrix quality is essential for proper proliferation of the repair tissue, reflected by MOCART scores. The subchondral bone quality of the ABG site is essential for proper maturation of the cartilage repair tissue, reflected by cartilage T2 values.


Assuntos
Transplante Ósseo , Osso Esponjoso , Cartilagem Articular , Condrócitos/transplante , Articulação do Joelho/cirurgia , Adulto , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/cirurgia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Feminino , Seguimentos , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Transplante Autólogo , Resultado do Tratamento , Adulto Jovem
20.
Radiology ; 295(1): 136-145, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32013791

RESUMO

Background A multitask deep learning model might be useful in large epidemiologic studies wherein detailed structural assessment of osteoarthritis still relies on expert radiologists' readings. The potential of such a model in clinical routine should be investigated. Purpose To develop a multitask deep learning model for grading radiographic hip osteoarthritis features on radiographs and compare its performance to that of attending-level radiologists. Materials and Methods This retrospective study analyzed hip joints seen on weight-bearing anterior-posterior pelvic radiographs from participants in the Osteoarthritis Initiative (OAI). Participants were recruited from February 2004 to May 2006 for baseline measurements, and follow-up was performed 48 months later. Femoral osteophytes (FOs), acetabular osteophytes (AOs), and joint-space narrowing (JSN) were graded as absent, mild, moderate, or severe according to the Osteoarthritis Research Society International atlas. Subchondral sclerosis and subchondral cysts were graded as present or absent. The participants were split at 80% (n = 3494), 10% (n = 437), and 10% (n = 437) by using split-sample validation into training, validation, and testing sets, respectively. The multitask neural network was based on DenseNet-161, a shared convolutional features extractor trained with multitask loss function. Model performance was evaluated in the internal test set from the OAI and in an external test set by using temporal and geographic validation consisting of routine clinical radiographs. Results A total of 4368 participants (mean age, 61.0 years ± 9.2 [standard deviation]; 2538 women) were evaluated (15 364 hip joints on 7738 weight-bearing anterior-posterior pelvic radiographs). The accuracy of the model for assessing these five features was 86.7% (1333 of 1538) for FOs, 69.9% (1075 of 1538) for AOs, 81.7% (1257 of 1538) for JSN, 95.8% (1473 of 1538) for subchondral sclerosis, and 97.6% (1501 of 1538) for subchondral cysts in the internal test set, and 82.7% (86 of 104) for FOS, 65.4% (68 of 104) for AOs, 80.8% (84 of 104) for JSN, 88.5% (92 of 104) for subchondral sclerosis, and 91.3% (95 of 104) for subchondral cysts in the external test set. Conclusion A multitask deep learning model is a feasible approach to reliably assess radiographic features of hip osteoarthritis. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Aprendizado Profundo , Modelos Teóricos , Osteoartrite do Quadril/diagnóstico por imagem , Radiografia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...