Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Nanotechnol ; 11(4): 373-382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018531

RESUMO

BACKGROUND: A drug with poor water-solubility, like Dexamethasone acetate, can present lower bioavailability conventional for pharmaceutical formulations, and the presence of polymorphs in the raw material can lead to drug quality problems. OBJECTIVE: In this study, nanocrystals of dexamethasone acetate were synthesized by high pressure homogenizer (HPH) method in surfactant poloxamer 188 (P188) solid dispersion and the bioavailable in raw material with polymorphism presence was evaluated. METHODS: The powder pre-suspension was prepared by the HPH process, and the nanoparticles formed were incorporated in P188 solutions. The nanocrystals formed were characterized by techniques of XRD, SEM, FTIR, thermal analysis by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), dynamic light scattering (DLS) to analyze the particle size and zeta potential, and in vitro evaluation by dissolution studies. RESULTS: The characterization techniques were adequate to show the presence of raw material with physical moisture between two dexamethasone acetate polymorphs. The nanocrystals formed in the presence of the P188 in the formulation showed a considerable increase in the rate of dissolution of the drug in the medium and in the size of the stable nanocrystals, even in the presence of dexamethasone acetate polymorphs. CONCLUSION: The results showed that it was possible to produce dexamethasone nanocrystals by HPH process with regular size by the presence of the small amount of P188 surfactant. This article presents a novelty in the development of dexamethasone nanoparticles that have different polymorphic forms in their physical composition.


Assuntos
Nanopartículas , Poloxâmero , Solubilidade , Poloxâmero/química , Dexametasona , Tensoativos , Nanopartículas/química
2.
Lasers Med Sci ; 37(3): 1775-1786, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34664132

RESUMO

To assess the effect of curcumin-encapsulated Pluronic® F-127 (Cur-Plu) during antimicrobial photodynamic therapy (aPDT) over duo-species biofilm of Streptococcus mutans and Candida albicans. Thermal analysis, optical absorption, and fluorescence spectroscopy were evaluated. Minimum inhibitory concentration (MIC) and minimum bactericidal/fungal concentration were obtained. The biofilms were cultured for 48 h at 37 °C and treated according to the groups: P + M + L + (photosensitizer encapsulated with Pluronic® F-127 + light); P + D + L + (photosensitizer incorporated in 1% DMSO + light); P - M + L + (no Pluronic® F-127 + light); P - D + L + (1% DMSO + light); P - L + (Milli-Q water + light); P + M + L - (photosensitizer encapsulated with Pluronic® F-127 no light); P + D + L - (photosensitizer in 1% DMSO, no light); P - M + L - (Pluronic® F-127 no light); P - D + L - (1% DMSO, no light); P - L - (Milli-Q water, no light; negative control group); CHX (0.2% chlorhexidine, positive control group); and NYS (Nystatin). Dark incubation of 5 min was used. The groups that received aPDT were irradiated by blue LED (460 nm, 15 J/cm2). Cell viability of the biofilms was performed by colony-forming units (CFU/mL) and confocal microscopy. Two-way ANOVA followed by Tukey's post hoc test was used at a significance level of 5%. P + D + L + and P + M + L + groups exhibited better log-reduction for both Candida albicans and Streptococcus mutans biofilms than P - M + L + , P - L + , and P - D + L + experimental groups. Furthermore, P + M + L + and P + D + L + showed greater reduction for Candida albicans than for Streptococcus mutans. aPDT mediated by Cur-Plu can be a potential strategy for biofilm control against duo-species biofilm of Streptococcus mutans and Candida albicans.


Assuntos
Curcumina , Fotoquimioterapia , Biofilmes , Candida albicans , Curcumina/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Poloxâmero/farmacologia , Streptococcus mutans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...