Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 123: 105626, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908736

RESUMO

The COVID-19 outbreak has highlighted the importance of pandemic preparedness for the prevention of future health crises. One virus family with high pandemic potential are Arenaviruses, which have been detected almost worldwide, particularly in Africa and the Americas. These viruses are highly understudied and many questions regarding their structure, replication and tropism remain unanswered, making the design of an efficacious and molecularly-defined vaccine challenging. We propose that structure-driven computational vaccine design will contribute to overcome these challenges. Computational methods for stabilization of viral glycoproteins or epitope focusing have made progress during the last decades and particularly during the COVID-19 pandemic, and have proven useful for rational vaccine design and the establishment of novel diagnostic tools. In this review, we summarize gaps in our understanding of Arenavirus molecular biology, highlight challenges in vaccine design and discuss how structure-driven and computationally informed strategies will aid in overcoming these obstacles.

2.
Curr Opin Struct Biol ; 82: 102656, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467526

RESUMO

Recent studies on G protein-coupled receptors (GPCRs) dynamics report that GPCRs adopt a wide range of conformations that coexist in equilibrium, with the apo state of a GPCR having a high entropy. The formation of a ligand-GPCR-transducer complex comes with a reduction of conformational space and therefore with an entropic cost. We hypothesize that the availability of binding partners, their binding affinity and the rigidity of the respective binding sites are reflected in a distinct degree of sequence conservation to balance the energetic cost of intra- and extracellular binding events. Here, we outline the current findings in delineating the conformational space and include sequential conservation of many-to-many ligand-receptor systems to discuss the entropic cost that comes with GPCR signal transduction.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Ligantes , Receptores Acoplados a Proteínas G/química , Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais/fisiologia , Termodinâmica , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...