Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 122(2): 888-896, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28981284

RESUMO

It has been shown that the rate of decomposition of methyl thiolate species on copper is accelerated by sliding on a methyl thiolate covered surface in ultrahigh vacuum at room temperature. The reaction produces small gas-phase hydrocarbons and deposits sulfur on the surface. Here, a new ReaxFF potential was developed to enable investigation of the molecular processes that induce this mechanochemical reaction by using density functional theory calculations to tune force field parameters for the model system. Various processes, including volumetric expansion/compression of CuS, CuS2, and Cu2S unit cells; bond dissociation of Cu-S and valence angle bending of Cu-S-C; the binding energies of SCH3, CH3, and S atoms on a Cu surface; and energy for the decomposition of methyl thiolate molecular species on copper, were used to identify the new ReaxFF parameters. Molecular dynamics simulations of the reactions of adsorbed methyl thiolate species at various temperatures were performed to demonstrate the validity of the new potential and to study the thermal reaction pathways. It was found that reaction is initiated by C-S bond scission, consistent with experiments, and that the resulting methyl species diffuse on the surface and combine to desorb ethane, also as found experimentally.

2.
Phys Chem Chem Phys ; 16(46): 25515-22, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25347301

RESUMO

A class of macromolecules based on the architecture of the well-known fullerenes is theoretically investigated. The building blocks used to geometrically construct these molecules are the two dimensional structures: porous graphene and biphenylene-carbon. Density functional-based tight binding methods as well as reactive molecular dynamics methods are applied to study the electronic and structural properties of these molecules. Our calculations predict that these structures can be stable up to temperatures of 2500 K. The atomization energies of carbon structures are predicted to be in the range of 0.45 eV per atom to 12.11 eV per atom (values relative to the C60 fullerene), while the hexagonal boron nitride analogues have atomization energies between -0.17 eV per atom and 12.01 eV per atom (compared to the B12N12 fullerene). Due to their high porosity, these structures may be good candidates for gas storage and/or molecular encapsulation.

3.
Phys Rev Lett ; 111(11): 115502, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24074105

RESUMO

We propose a mechanism to control the interaction between adsorbates on graphene. The interaction between a pair of adsorbates--the change in adsorption energy of one adsorbate in the presence of another--is dominated by the interaction mediated by graphene's π electrons and has two distinct regimes. Ab initio density functional, numerical tight-binding, and analytical calculations are used to develop the theory. We demonstrate that the interaction can be tuned in a wide range by adjusting the adsorbate-graphene bonding or the chemical potential.

4.
ACS Nano ; 7(6): 4746-55, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23659463

RESUMO

This work demonstrates the production of a well-controlled, chemical gradient on the surface of graphene. By inducing a gradient of oxygen functional groups, drops of water and dimethyl-methylphosphonate (a nerve agent simulant) are "pulled" in the direction of increasing oxygen content, while fluorine gradients "push" the droplet motion in the direction of decreasing fluorine content. The direction of motion is broadly attributed to increasing/decreasing hydrophilicity, which is correlated to high/low adhesion and binding energy. Such tunability in surface chemistry provides additional capabilities in device design for applications ranging from microfluidics to chemical sensing.


Assuntos
Grafite/química , Movimento (Física) , Flúor/química , Modelos Moleculares , Conformação Molecular , Compostos Organofosforados/química , Oxigênio/química , Propriedades de Superfície , Água/química
5.
Nano Lett ; 12(8): 4212-8, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22764747

RESUMO

We report a method to introduce direct bonding between graphene platelets that enables the transformation of a multilayer chemically modified graphene (CMG) film from a "paper mache-like" structure into a stiff, high strength material. On the basis of chemical/defect manipulation and recrystallization, this technique allows wide-range engineering of mechanical properties (stiffness, strength, density, and built-in stress) in ultrathin CMG films. A dramatic increase in the Young's modulus (up to 800 GPa) and enhanced strength (sustainable stress ≥1 GPa) due to cross-linking, in combination with high tensile stress, produced high-performance (quality factor of 31,000 at room temperature) radio frequency nanomechanical resonators. The ability to fine-tune intraplatelet mechanical properties through chemical modification and to locally activate direct carbon-carbon bonding within carbon-based nanomaterials will transform these systems into true "materials-by-design" for nanomechanics.

6.
Nano Lett ; 10(8): 3001-5, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698613

RESUMO

Graphene films grown on Cu foils have been fluorinated with xenon difluoride (XeF(2)) gas on one or both sides. When exposed on one side the F coverage saturates at 25% (C(4)F), which is optically transparent, over 6 orders of magnitude more resistive than graphene, and readily patterned. Density functional calculations for varying coverages indicate that a C(4)F configuration is lowest in energy and that the calculated band gap increases with increasing coverage, becoming 2.93 eV for one C(4)F configuration. During defluorination, we find hydrazine treatment effectively removes fluorine while retaining graphene's carbon skeleton. The same films may be fluorinated on both sides by transferring graphene to a silicon-on-insulator substrate enabling XeF(2) gas to etch the Si underlayer and fluorinate the backside of the graphene film to form perfluorographane (CF) for which calculated the band gap is 3.07 eV. Our results indicate single-side fluorination provides the necessary electronic and optical changes to be practical for graphene device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...