Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 11(1): 6, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34985506

RESUMO

Purpose: Comprehensive genetic testing for inherited retinal dystrophy (IRD) is challenged by difficult-to-sequence genomic regions, which are often mutational hotspots, such as RPGR ORF15. The purpose of this study was to evaluate the diagnostic contribution of RPGR variants in an unselected IRD patient cohort referred for testing in a clinical diagnostic laboratory. Methods: A total of 5201 consecutive patients were analyzed with a clinically validated next-generation sequencing (NGS)-based assay, including the difficult-to-sequence RPGR ORF15 region. Copy number variant (CNV) detection from NGS data was included. Variant interpretation was performed per the American College of Medical Genetics and Genomics guidelines. Results: A confirmed molecular diagnosis in RPGR was found in 4.5% of patients, 24.0% of whom were females. Variants in ORF15 accounted for 74% of the diagnoses; 29% of the diagnostic variants were in the most difficult-to-sequence central region of ORF15 (c.2470-3230). Truncating variants made up the majority (91%) of the diagnostic variants. CNVs explained 2% of the diagnostic cases, of which 80% were one- or two-exon deletions outside of ORF15. Conclusions: Our findings indicate that high-throughput, clinically validated NGS-based testing covering the difficult-to-sequence region of ORF15, in combination with high-resolution CNV detection, can help to maximize the diagnostic yield for patients with IRD. Translational Relevance: These results demonstrate an accurate and scalable method for the detection of RPGR-related variants, including the difficult-to-sequence ORF15 hotspot, which is relevant given current and emerging therapeutic opportunities.


Assuntos
Proteínas do Olho , Distrofias Retinianas , Éxons , Proteínas do Olho/genética , Feminino , Humanos , Linhagem , Prevalência , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/epidemiologia , Distrofias Retinianas/genética
2.
Front Genet ; 12: 786705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899865

RESUMO

Background: Familial dilated cardiomyopathy (DCM) is a monogenic disorder typically inherited in an autosomal dominant pattern. We have identified two Finnish families with familial cardiomyopathy that is not explained by a variant in any previously known cardiomyopathy gene. We describe the cardiac phenotype related to homozygous truncating GCOM1 variants. Methods and Results: This study included two probands and their relatives. All the participants are of Finnish ethnicity. Whole-exome sequencing was used to test the probands; bi-directional Sanger sequencing was used to identify the GCOM1 variants in probands' family members. Clinical evaluation was performed, medical records and death certificates were obtained. Immunohistochemical analysis of myocardial samples was conducted. A homozygous GCOM1 variant was identified altogether in six individuals, all considered to be affected. None of the nine heterozygous family members fulfilled any cardiomyopathy criteria. Heart failure was the leading clinical feature, and the patients may have had a tendency for atrial arrhythmias. Conclusions: This study demonstrates the significance of GCOM1 variants as a cause of human cardiomyopathy and highlights the importance of searching for new candidate genes when targeted gene panels do not yield a positive outcome.

3.
Small GTPases ; 2(1): 31-35, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21686279

RESUMO

Mitochondrial DNA (mtDNA) is a multi-copy genome encoding for proteins essential for aerobic energy metabolism. Mutations in mtDNA can lead to a variety of human diseases, from mild metabolic syndromes to severe fatal encephalomyopathies. Most mtDNA mutations co-exist with wild type genomes in a state known as heteroplasmy. The segregation of these pathogenic mutants is tissue and mutation specific, and a key determinant in the onset and severity of human mitochondrial disorders. We used a forward genetic approach in mice to identify and demonstrate that Gimap3 (GTP ase of immunity associated protein) is a key regulator of mtDNA segregation in leukocytes. The Gimap gene cluster is found only in vertebrates and appear to be a class of nucleotide-dependent dimerization GTP ases. Gimap3 is a membrane-anchored GTP ase with a critical role in T cell development. Here, we summarize our genetic findings and postulate how Gimap3 might regulate mtDNA genetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...