Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Control Release ; 364: 312-325, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37884210

RESUMO

Cell membrane-derived particles (Mp) are rounded membrane-enclosed particles that are shed from tumor cells. Mp are formed from tumor membranes and are capable of tumor targeting and immunotherapeutic agents because they share membrane homology with parental cells; thus, they are under consideration as a drug delivery vehicle. Prostate-specific membrane antigen (PSMA), a transmembrane glycoprotein with enzymatic functionality, is highly expressed in Mp and extracellular vesicles (EV) from prostate cancer (PCa) with poor clinical prognosis. Although PSMA expression was previously shown in EV and Mp isolated from cell lines and from the blood of patients with high-grade PCa, no pathophysiological effects have been linked to PCa-derived Mp. Here, we compared Mp from PSMA-expressing (PSMA-Mp) and PSMA-non-expressing (WT-Mp) cells side by side in vitro and in vivo. PSMA-Mp can transfer PSMA and new phenotypic characteristics to the tumor microenvironment. The consequence of PSMA transfer to cells and increased secretion of vascular endothelial growth factor-A (VEGF-A), pro-angiogenic and pro-lymphangiogenic mediators, with increased 4E binding protein 1 (4EBP-1) phosphorylation.


Assuntos
Neoplasias da Próstata , Fator A de Crescimento do Endotélio Vascular , Masculino , Humanos , Neoplasias da Próstata/patologia , Membrana Celular/metabolismo , Microambiente Tumoral
2.
Sci Rep ; 13(1): 10265, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355705

RESUMO

Febrile seizures during early childhood are a relevant risk factor for the development of mesial temporal lobe epilepsy. Nevertheless, the molecular mechanism induced by febrile seizures that render the brain susceptible or not-susceptible to epileptogenesis remain poorly understood. Because the temporal investigation of such mechanisms in human patients is impossible, rat models of hyperthermia-induced febrile seizures have been used for that purpose. Here we conducted a temporal analysis of the transcriptomic and microRNA changes in the ventral CA3 of rats that develop (HS group) or not-develop (HNS group) seizures after hyperthermic insult on the eleventh postnatal day. The selected time intervals corresponded to acute, latent, and chronic phases of the disease. We found that the transcriptional differences between the HS and the HNS groups are related to inflammatory pathways, immune response, neurogenesis, and dendritogenesis in the latent and chronic phases. Additionally, the HNS group expressed a greater number of miRNAs (some abundantly expressed) as compared to the HS group. These results indicate that HNS rats were able to modulate their inflammatory response after insult, thus presenting better tissue repair and re-adaptation. Potential therapeutic targets, including genes, miRNAs and signaling pathways involved in epileptogenesis were identified.


Assuntos
Hipertermia Induzida , MicroRNAs , Convulsões Febris , Humanos , Pré-Escolar , Ratos , Animais , Convulsões Febris/genética , Transcriptoma , Hipocampo , MicroRNAs/genética , Suscetibilidade a Doenças
3.
Nucl Med Biol ; 122-123: 108362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37356164

RESUMO

This study aimed to evaluate the role of positron emission tomography (PET) with [11C]PK11195 and [18F]FDG in the characterization of brown adipose tissue (BAT). METHODS: Male C57BL/6 mice were studied with the glucose analogue [18F]FDG (n = 21) and the TSPO mitochondrial tracer [11C]PK11195 (n = 28), without stimulus and after cold (6-9 °C) or beta-agonist (CL316243) stimuli. PET studies were performed at baseline and after 21 days of daily treatment with crotamine, which is a peptide described to induce adipocyte tissue browning and to increase BAT metabolism. Tracer uptake (SUVmax) was measured in the interscapular BAT and translocator protein 18 kDa (TSPO) expression was evaluated by immunohistochemistry. RESULTS: The cold stimulus increased [18F]FDG uptake compared to no-stimulus (5.21 ± 1.05 vs. 2.03 ± 0.21, p < 0.0001) and to beta-agonist stimulus (2.65 ± 0.39, p = 0.0003). After 21 days of treatment with crotamine, there was no significant difference in the [18F]FDG uptake compared to the baseline in the no-stimulus group and in the cold-stimulus group, with a significant increase in uptake after CL stimulus (baseline: 2.65 ± 0.39; 21 days crotamine: 4.77 ± 0.81, p = 0.0003). Evaluation of [11C]PK11195 at baseline shows that CL stimulus increases the BAT uptake compared to no-stimulus (4.47 ± 0.66 vs. 3.36 ± 0.68, p = 0.014). After 21 days of treatment with crotamine, there was no significant difference in the [11C]PK11195 uptake compared to the baseline in the no-stimulus group (2.94 ± 0.58, p = 0.7864) and also after CL stimulus (3.55 ± 0.79, p = 0.085). TSPO expression correlated with [11C]PK11195 uptake (r = 0.83, p = 0.018) but not with [18F]FDG uptake (r = 0.40, p = 0.516). CONCLUSIONS: [11C]PK11195 allowed the identification of BAT under thermoneutral conditions or after beta3-adrenergic stimulation in a direct correlation with TSPO expression. The beta-adrenergic stimulus, despite presenting a lower intensity of glycolytic activation compared to cold at baseline, allowed the observation of an increase in BAT uptake of [18F]FDG after 21 days of crotamine administration. Although some limitations were observed for the metabolic changes induced by crotamine, this study reinforced the potential of using [11C]PK11195 and/or [18F]FDG-PET to monitor the activation of BAT.


Assuntos
Tecido Adiposo Marrom , Fluordesoxiglucose F18 , Camundongos , Animais , Masculino , Fluordesoxiglucose F18/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons/métodos , Adrenérgicos/metabolismo
4.
Salud mil ; 42(1): e302, 05/05/2023. ilus, graf, tab
Artigo em Espanhol | LILACS, UY-BNMED, BNUY | ID: biblio-1531521

RESUMO

Introducción: el mieloma múltiple es un trastorno hematológico maligno y el segundo cáncer de la sangre más frecuente. El proceso de la angiogénesis tumoral es fundamental para el crecimiento y metástasis de muchos tipos de tumores, incluido en mieloma múltiple. Se sabe que la sobreexpresión del factor de crecimiento endothelial vascular se encuentra asociado a un mal pronóstico en esta patología, representando un blanco clave para la terapia anti-angiogénica en mieloma múltiple. El anticuerpo monoclonal Bevacizumab es capaz de unirse con gran afinidad al factor de crecimiento endothelial vascular bloqueando su acción. Objetivo: evaluar el Fab(Bevacizumab) marcado con 99mTc o Cy7 como potenciales agentes de imagen moleculares de la expresión de factor de crecimiento endothelial vascular en mieloma múltiple. Material y métodos: la expresión de factor de crecimiento endothelial vascular fue analizada mediante citometría de flujo en la línea celular huaman de mieloma múltiple, la MM1S. Fab(Bevacizumab) fue producido mediante digestión de Bevacizumab con papaína, conjugado a NHS-HYNIC-Tfa y radiomarcado con 99mTc. Se realizaron estudios de biodistribución y de tomografía computarizada por emisión del fotón simple. A su vez, Fab(Bevacizumab) fue marcado con Cy7 para obtener imágenes de fluorescencia in vivo hasta 96 horas. Resultados: el análisis por citometría de flujo en la línea celular MM1S reveló que la expresión de factor de crecimiento endothelial vascular es predominantemente intracelular. Los estudios de biodistribución y SPECT/CT del complejo 99mTc-HYNIC-Fab(Bevacizumab) mostraron una rápida eliminación sanguínea y una significativa captación a nivel renal y tumoral. Las imágenes por fluorescencia empleando Cy7-Fab(Bevacizumab) permitieron la visualización tumoral hasta 96 h p.i. Conclusiones: logramos visualizar la expresión de factor de crecimiento endothelial vascular in vivo en mieloma múltiple mediante el empleo del fragmento Fab del anticuerpo anti-VEGF (Bevacizumab) marcado con 99mTc y Cy7. Estos nuevos agentes de imagen molecular podrían ser empleados potencialmente en el ámbito clínico para la estadificación y el seguimiento de pacientes con mieloma múltiple, mediante la visualización radioactiva in vivo de la expresión de factor de crecimiento endothelial vascular en todo el cuerpo. La imagen óptica de estos trazadores mejoraría el muestreo tumoral y podría guiar la extirpación quirúrgica.


Introduction: Multiple myeloma is a hematologic malignancy and the second most common blood cancer. The process of tumor angiogenesis is central to the growth and metastasis of many types of tumors, including multiple myeloma. Overexpression of vascular endothelial growth factor is known to be associated with poor prognosis in this pathology, representing a key target for anti-angiogenic therapy in multiple myeloma. The monoclonal antibody Bevacizumab is able to bind with high affinity to vascular endothelial growth factor blocking its action. Objective: to evaluate 99mTc- or Cy7-labeled Fab(Bevacizumab) as potential molecular imaging agents of vascular endothelial growth factor expression in multiple myeloma. Methods: Vascular endothelial growth factor expression was analyzed by flow cytometry in the multiple myeloma huaman cell line, MM1S. Fab(Bevacizumab) was produced by digestion of Bevacizumab with papain, conjugated to NHS-HYNIC-Tfa and radiolabeled with 99mTc. Biodistribution and single photon emission computed tomography studies were performed. In turn, Fab(Bevacizumab) was labeled with Cy7 to obtain in vivo fluorescence images up to 96 hours. Results: Flow cytometry analysis in the MM1S cell line revealed that vascular endothelial growth factor expression is predominantly intracellular. Biodistribution and SPECT/CT studies of the 99mTc-HYNIC-Fab(Bevacizumab) complex showed rapid blood clearance and significant renal and tumor uptake. Fluorescence imaging using Cy7-Fab(Bevacizumab) allowed tumor visualization up to 96 h p.i. Conclusions: we were able to visualize vascular endothelial growth factor expression in vivo in multiple myeloma using the Fab fragment of the anti-VEGF antibody (Bevacizumab) labeled with 99mTc and Cy7. These new molecular imaging agents could potentially be employed in the clinical setting for staging and monitoring of patients with multiple myeloma by in vivo radioactive visualization of vascular endothelial growth factor expression throughout the body. Optical imaging of these tracers would improve tumor sampling and could guide surgical excision.


Introdução: O mieloma múltiplo é uma malignidade hematológica e o segundo câncer de sangue mais comum. O processo de angiogênese tumoral é fundamental para o crescimento e a metástase de muitos tipos de tumores, incluindo o mieloma múltiplo. Sabe-se que a superexpressão do fator de crescimento endotelial vascular está associada a um prognóstico ruim no mieloma múltiplo, representando um alvo importante para a terapia antiangiogênica no mieloma múltiplo. O anticorpo monoclonal Bevacizumab é capaz de se ligar com alta afinidade ao fator de crescimento endotelial vascular e bloquear sua ação. Objetivo: avaliar o Fab(Bevacizumab) marcado com 99mTc ou Cy7 como possíveis agentes de imagem molecular da expressão do fator de crescimento endotelial vascular no mieloma múltiplo. Métodos: A expressão do fator de crescimento endotelial vascular foi analisada por citometria de fluxo na linha celular de mieloma múltiplo MM1S. O Fab(Bevacizumab) foi produzido pela digestão do Bevacizumab com papaína, conjugado com NHS-HYNIC-Tfa e radiomarcado com 99mTc. Foram realizados estudos de biodistribuição e tomografia computadorizada por emissão de fóton único. Por sua vez, o Fab(Bevacizumab) foi marcado com Cy7 para geração de imagens de fluorescência in vivo por até 96 horas. Resultados: A análise de citometria de fluxo na linha celular MM1S revelou que a expressão do fator de crescimento endotelial vascular é predominantemente intracelular. Os estudos de biodistribuição e SPECT/CT do complexo 99mTc-HYNIC-Fab(Bevacizumab) mostraram uma rápida depuração sanguínea e uma captação renal e tumoral significativa. A imagem de fluorescência usando Cy7-Fab(Bevacizumab) permitiu a visualização do tumor até 96 horas p.i. Conclusões: Conseguimos visualizar a expressão do fator de crescimento endotelial vascular in vivo no mieloma múltiplo usando o fragmento Fab do anticorpo anti-VEGF (Bevacizumab) marcado com 99mTc e Cy7. Esses novos agentes de imagem molecular poderiam ser usados no cenário clínico para o estadiamento e o monitoramento de pacientes com mieloma múltiplo, visualizando radioativamente a expressão do fator de crescimento endotelial vascular in vivo em todo o corpo. A geração de imagens ópticas desses traçadores melhoraria a amostragem do tumor e poderia orientar a excisão cirúrgica.


Assuntos
Animais , Camundongos , Tecnécio/farmacocinética , Imagem Molecular/métodos , Citometria de Fluxo/métodos , Bevacizumab/farmacocinética , Mieloma Múltiplo/diagnóstico por imagem , Fatores de Crescimento do Endotélio Vascular , Camundongos Endogâmicos BALB C
5.
Pharmaceutics ; 15(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36986690

RESUMO

Bone marrow transplantation is a treatment for a variety of hematological and non-hematological diseases. For the transplant success, it is mandatory to have a thriving engraftment of transplanted cells, which directly depends on their homing. The present study proposes an alternative method to evaluate the homing and engraftment of hematopoietic stem cells using bioluminescence imaging and inductively coupled plasma mass spectrometry (ICP-MS) associated with superparamagnetic iron oxide nanoparticles. We have identified an enriched population of hematopoietic stem cells in the bone marrow following the administration of Fluorouracil (5-FU). Lately, the cell labeling with nanoparticles displayed the greatest internalization status when treated with 30 µg Fe/mL. The quantification by ICP-MS evaluate the stem cells homing by identifying 3.95 ± 0.37 µg Fe/mL in the control and 6.61 ± 0.84 µg Fe/mL in the bone marrow of transplanted animals. In addition, 2.14 ± 0.66 mg Fe/g in the spleen of the control group and 2.17 ± 0.59 mg Fe/g in the spleen of the experimental group was also measured. Moreover, the bioluminescence imaging provided the follow up on the hematopoietic stem cells behavior by monitoring their distribution by the bioluminescence signal. Lastly, the blood count enabled the monitoring of animal hematopoietic reconstitution and ensured the transplantation effectiveness.

6.
Pharmaceutics ; 14(12)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36559209

RESUMO

BACKGROUND: Breast tumor inflammation is an immunological process that occurs mainly by mediation of Tumor-Associated Macrophages (TAM). Aiming for a specific measurement of tumor inflammation, the current study evaluated the potential of Positron Emission Tomography (PET) imaging with [11C](R)-PK11195 to evaluate tumor inflammation in a mammary tumor animal model. METHODS: Female Balb/C mice were inoculated with 4T1 cells. The PET imaging with [11C](R)-PK11195 and [18F]FDG was acquired 3 days, 1 week, and 2 weeks after cell inoculation. RESULTS: The [11C](R)-PK11195 tumor uptake increased from 3 days to 1 week, and decreased at 2 weeks after cell inoculation, as opposed to the [18F]FDG uptake, which showed a slight decrease in uptake at 1 week and increased uptake at 2 weeks. In the control group, no significant differences occurred in tracer uptake over time. Tumor uptake of both radiopharmaceuticals is more expressed in tumor edge regions, with greater intensity at 2 weeks, as demonstrated by [11C](R)-PK11195 autoradiography and immunofluorescence with TSPO antibodies and CD86 pro-inflammatory phenotype. CONCLUSION: The [11C](R)-PK11195 was able to identify heterogeneous tumor inflammation in a murine model of breast cancer and the uptake varied according to tumor size. Together with the glycolytic marker [18F]FDG, molecular imaging with [11C](R)-PK11195 may provide a better characterization of inflammatory responses in cancer.

7.
Nano Lett ; 22(14): 5961-5972, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35786891

RESUMO

The unbalanced coagulation of blood is a life-threatening event that requires accurate and timely treatment. We introduce a user-friendly biomolecular platform based on modular RNA-DNA anticoagulant fibers programmed for reversible extracellular communication with thrombin and subsequent control of anticoagulation via a "kill-switch" mechanism that restores hemostasis. To demonstrate the potential of this reconfigurable technology, we designed and tested a set of anticoagulant fibers that carry different thrombin-binding aptamers. All fibers are immunoquiescent, as confirmed in freshly collected human peripheral blood mononuclear cells. To assess interindividual variability, the anticoagulation is confirmed in the blood of human donors from the U.S. and Brazil. The anticoagulant fibers reveal superior anticoagulant activity and prolonged renal clearance in vivo in comparison to free aptamers. Finally, we confirm the efficacy of the "kill-switch" mechanism in vivo in murine and porcine models.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas , Ácidos Nucleicos , Animais , Anticoagulantes , Aptâmeros de Nucleotídeos/química , Humanos , Leucócitos Mononucleares , Camundongos , Suínos , Trombina/química
8.
Sci Total Environ ; 813: 152345, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34942250

RESUMO

Despite the significant increase in the generation of SARS-CoV-2 contaminated domestic and hospital wastewater, little is known about the ecotoxicological effects of the virus or its structural components in freshwater vertebrates. In this context, this study evaluated the deleterious effects caused by SARS-CoV-2 Spike protein on the health of Danio rerio, zebrafish. We demonstrated, for the first time, that zebrafish injected with fragment 16 to 165 (rSpike), which corresponds to the N-terminal portion of the protein, presented mortalities and adverse effects on liver, kidney, ovary and brain tissues. The conserved genetic homology between zebrafish and humans might be one of the reasons for the intense toxic effects followed inflammatory reaction from the immune system of zebrafish to rSpike which provoked damage to organs in a similar pattern as happen in severe cases of COVID-19 in humans, and, resulted in 78,6% of survival rate in female adults during the first seven days. The application of spike protein in zebrafish was highly toxic that is suitable for future studies to gather valuable information about ecotoxicological impacts, as well as vaccine responses and therapeutic approaches in human medicine. Therefore, besides representing an important tool to assess the harmful effects of SARS-CoV-2 in the aquatic environment, we present the zebrafish as an animal model for translational COVID-19 research.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Feminino , Humanos , SARS-CoV-2 , Peixe-Zebra
9.
Aging (Albany NY) ; 13(18): 21914-21940, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528900

RESUMO

Metformin has been tested as an anti-cancer therapy with potential to improve conventional chemotherapy. However, in some cases, metformin fails to sensitize tumors to chemotherapy. Here we test if the presence of P53 could predict the activity of metformin as an adjuvant for cisplatin-based therapy in non-small cell lung cancer (NSCLC). A549, HCC 827 (TP53 WT), H1299, and H358 (TP53 null) cell lines were used in this study. A549 cells were pre-treated with a sub-lethal dose of cisplatin to induce chemoresistance. The effects of metformin were tested both in vitro and in vivo and related to the ability of cells to accumulate Jarid1b, a histone demethylase involved in cisplatin resistance in different cancers. Metformin sensitized A549 and HCC 827 cells (but not H1299 and H358 cells) to cisplatin in a P53-dependent manner, changing its subcellular localization to the mitochondria. Treatment with a sub-lethal dose of cisplatin increased Jarid1b expression, yet downregulated P53 levels, protecting A549Res cells from metformin-induced chemosensitization to cisplatin and favored a glycolytic phenotype. Treatment with FL3, a synthetic flavagline, sensitized A549Res cells to cisplatin. In conclusion, metformin could potentially be used as an adjuvant for cisplatin-based therapy in NSCLC cells if wild type P53 is present.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Cisplatino/farmacologia , Histona Desmetilases com o Domínio Jumonji/genética , Metformina/farmacologia , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
Biomedicines ; 9(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209598

RESUMO

This study proposes an innovative way to evaluate the homing and tracking of hematopoietic stem cells from young and old mice labeled with SPIONNIRF-Rh conjugated with two types of fluorophores (NIRF and Rhodamine), and their grafting by bioluminescence (BLI) in a bone marrow transplant (BMT) model. In an in vitro study, we isolated bone marrow mononuclear cells (BM-MNC) from young and old mice, and analyzed the physical-chemical characteristics of SPIONNIRF-Rh, their internalization, cell viability, and the iron quantification by NIRF, ICP-MS, and MRI. The in vivo study was performed in a BMT model to evaluate the homing, tracking, and grafting of young and old BM-MNC labeled with SPIONNIRF-Rh by NIRF and BLI, as well as the hematological reconstitution for 120 days. 5FU influenced the number of cells isolated mainly in young cells. SPIONNIRF-Rh had adequate characteristics for efficient internalization into BM-MNC. The iron load quantification by NIRF, ICP-MS, and MRI was in the order of 104 SPIONNIRF-Rh/BM-MNC. In the in vivo study, the acute NIRF evaluation showed higher signal intensity in the spinal cord and abdominal region, and the BLI evaluation allowed follow-up (11-120 days), achieving a peak of intensity at 30 days, which remained stable around 108 photons/s until the end. The hematologic evaluation showed similar behavior until 30 days and the histological results confirm that iron is present in almost all tissue evaluated. Our results on BM-MNC homing and tracking in the BMT model did not show a difference in migration or grafting of cells from young or old mice, with the hemogram analysis trending to differentiation towards the myeloid lineage in mice that received cells from old animals. The cell homing by NIRF and long term cell follow-up by BLI highlighted the relevance of the multimodal nanoparticles and combined techniques for evaluation.

11.
Anticancer Agents Med Chem ; 21(14): 1883-1893, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397271

RESUMO

BACKGROUND: Multiple Myeloma (MM) is a malignant hematologic disorder and the second most common blood cancer. Interleukin-6 (IL-6) has been identified as a crucial factor for the proliferation and survival of MM cells and the overexpression of IL-6 receptor is being studied as a molecular target for therapeutic and diagnostic use in myelomas and other comorbidities. Tocilizumab is a humanized monoclonal antibody that binds IL-6R. OBJECTIVE: We aim to label and evaluate Fab(Tocilizumab) with 99mTechnetium or Cy7 as potential MM imaging agents. METHODS: IL-6R distribution was analyzed by Laser Confocal Microscopy (LCM) in MM cell lines. Fab(Tocilizumab) was produced by the digestion of Tocilizumab with papain for 24h at 37°C, derivatized with NHS-HYNIC-Tfa and radiolabeled with 99mTc. Radiochemical stability and in vitro cell assays were evaluated. Biodistribution and SPECT/CT were performed. Also, Fab(Tocilizumab) was labeled with Cy7 for in vivo fluorescence imaging up to 72h. RESULTS: LCM analysis demonstrates IL-6R distribution on MM cell lines. Incubation with papain resulted in complete digestion of Tocilizumab and exhibited a good purity and homogeneity. Radiolabeling with 99mTc via NHS-HYNIC-Tfa was found to be fast, easy, reproducible and stable, revealing high radiochemical purity and without interfering with IL-6R recognition. Biodistribution and SPECT/CT studies showed a quick blood clearance and significant kidney and MM engrafted tumor uptake. Cy7-Fab(Tocilizumab) fluorescent imaging allowed MM1S tumor identification up to 72h p.i. CONCLUSION: These new molecular imaging agents could potentially be used in the clinical setting for staging and follow-up of MM through radioactive whole-body IL-6R expression visualization in vivo. The fluorescent version could be used for tissue sample evaluation and to guide surgical excision, if necessary.


Assuntos
Anticorpos Monoclonais Humanizados/química , Carbocianinas/química , Imagem Molecular , Mieloma Múltiplo/diagnóstico por imagem , Compostos de Organotecnécio/química , Compostos Radiofarmacêuticos/química , Humanos , Receptores de Interleucina-6/análise
12.
Sci Rep ; 10(1): 3704, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111854

RESUMO

Diesel exhaust particles (DEP) are known to generate reactive oxygen species in the respiratory system, triggering cells to activate antioxidant defence mechanisms, such as Keap1-Nrf2 signalling and autophagy. The aim of this study was to investigate the relationship between the Keap1-Nrf2 signalling and autophagy pathways after DEP exposure. BEAS-2B cells were transfected with silencing RNA (siRNA) specific to Nrf2 and exposed to DEP. The relative levels of mRNA for Nrf2, NQO1, HO-1, LC3B, p62 and Atg5 were determined using RT-PCR, while the levels of LCB3, Nrf2, and p62 protein were determined using Western blotting. The autophagy inhibitor bafilomycin caused a significant decrease in the production of Nrf2, HO-1 and NQO1 compared to DEPs treatment, whereas the Nrf2 activator sulforaphane increased the LC3B (p = 0.020) levels. BEAS-2B cells exposed to DEP at a concentration of 50 µg/mL for 2 h showed a significant increase in the expression of LC3B (p = 0.001), p62 (p = 0.008), Nrf2 (p = 0.003), HO-1 (p = 0.001) and NQO1 (p = 0.015) genes compared to control. In siRNA-transfected cells, the LC3B (p < 0.001), p62 (p = 0.001) and Atg5 (p = 0.024) mRNA levels and the p62 and LC3II protein levels were decreased, indicating that Nrf2 modulated the expression of autophagy markers (R < 1). These results imply that, in bronchial cells exposed to DEP, the Nrf2 system positively regulates autophagy to maintain cellular homeostasis.


Assuntos
Antioxidantes/metabolismo , Autofagia , Brônquios/metabolismo , Células Epiteliais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Emissões de Veículos/toxicidade , Brônquios/patologia , Linhagem Celular , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos
14.
Org Biomol Chem ; 16(29): 5275-5285, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29974915

RESUMO

Pretargeted imaging, based on the highly reactive process between [1,2,4,5]tetrazines with trans-cyclooctene (TCO), appears as an attractive strategy to overcome disadvantages associated with traditional radioimmunoconjugates. To be successful, the radiolabeled component should react in vivo with the conjugated antibody and the non reactive excess clear fast from the organism. Herein, we explore the in vivo effects of hydrophilic linker incorporation into [1,2,4,5]tetrazine systems bearing a 6-hydrazinonicotinyl (HYNIC) moiety for technetium-99m coordination. Incorporation of a polypeptide chain containing hydrophilic aminoacids, resulted in a derivative with renal clearance. Pretargeted bevacizumab imaging was used as proof of concept.

15.
Oncotarget ; 7(50): 83570-83587, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27835877

RESUMO

ST6GalNAc-I, the sialyltransferase responsible for sialyl-Tn (sTn) synthesis, has been previously reported to be positively associated with cancer aggressiveness. Here we describe a novel sTn-dependent mechanism for chemotherapeutic resistance. We show that sTn protects cancer cells against chemotherapeutic-induced cell death by decreasing the interaction of cell surface glycan receptors with galectin-3 and increasing its intracellular accumulation. Moreover, exogenously added galectin-3 potentiated the chemotherapeutics-induced cytotoxicity in sTn non-expressing cells, while sTn overexpressing cells were protected. We also found that the expression of sTn was associated with a reduction in galectin-3-binding sites in human gastric samples tumors. ST6GalNAc-I knockdown restored galectin-3-binding sites on the cell surface and chemotherapeutics sensibility. Our results clearly demonstrate that an interruption of O-glycans extension caused by ST6GalNAc-I enzymatic activity leads to tumor cells resistance to chemotherapeutic drugs, highlighting the need for the development of novel strategies to target galectin-3 and/or ST6GalNAc-I.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Galectina 3/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Animais , Antígenos Glicosídicos Associados a Tumores/genética , Antígenos Glicosídicos Associados a Tumores/metabolismo , Proteínas Sanguíneas , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Galectinas , Glicosilação , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Processamento de Proteína Pós-Traducional , Transporte Proteico , Interferência de RNA , Sialiltransferases/genética , Sialiltransferases/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fatores de Tempo , Transfecção , Carga Tumoral
16.
Onco Targets Ther ; 9: 5847-5854, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713638

RESUMO

Monoclonal antibodies as polymeric nanoparticles are quite interesting and endow this new drug category with many advantages, especially by reducing the number of adverse reactions and, in the case of radiopharmaceuticals, also reducing the amount of radiation (dose) administered to the patient. In this study, a nanoradiopharmaceutical was developed using polylactic acid (PLA)/polyvinyl alcohol (PVA)/montmorillonite (MMT)/trastuzumab nanoparticles labeled with technetium-99m (99mTc) for breast cancer imaging. In order to confirm the nanoparticle formation, atomic force microscopy and dynamic light scattering were performed. Cytotoxicity of the nanoparticle and biodistribution with 99mTc in healthy and inducted animals were also measured. The results from atomic force microscopy showed that the nanoparticles were spherical, with a size range of ~200-500 nm. The dynamic light scattering analysis demonstrated that over 90% of the nanoparticles produced had a size of 287 nm with a zeta potential of -14,6 mV. The cytotoxicity results demonstrated that the nanoparticles were capable of reaching breast cancer cells. The biodistribution data demonstrated that the PLA/PVA/MMT/trastuzumab nanoparticles labeled with 99mTc have great renal clearance and also a high uptake by the lesion, as ~45% of the PLA/PVA/MMT/trastuzumab nanoparticles injected were taken up by the lesion. The data support PLA/PVA/MMT/trastuzumab labeled with 99mTc nanoparticles as nanoradiopharmaceuticals for breast cancer imaging.

17.
Curr Cancer Drug Targets ; 15(5): 445-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25847010

RESUMO

Drug delivery systems are under intense investigation all around the world, especially in oncology research. Indeed, in some cases, like bone metastasis, nanodrugs may represent the last and best choice for both treatment and imaging of early cancer foci. Nuclear medicine has been using MDP labelled with 99mTc as radiopharmaceuticals for many years; however, their use as nanoradiopharmaceuticals is very innovative and creates a new way to establish radiopharmacy in this new scenario offered by nanotechnology. In this study we developed and tested nano-MDP-labelled with 99mTc in rats induced with bone cancer metastasis and the results showed that it may work in patients. However, some further experiments are required in order to initiate protocols in humans.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/metabolismo , Nanotecnologia/métodos , Compostos Radiofarmacêuticos/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Cintilografia/métodos
18.
Exp Toxicol Pathol ; 67(4): 323-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25769681

RESUMO

This study assessed the effects of the diesel exhaust particles on ERK and JNK MAPKs activation, cell rheology (viscoelasticity), and cytotoxicity in bronchial epithelial airway cells (BEAS-2B). Crude DEP and DEP after extraction with hexane (DEP/HEX) were utilized. The partial reduction of some DEP/HEX organics increased the biodisponibility of many metallic elements. JNK and ERK were activated simultaneously by crude DEP with no alterations in viscoelasticity of the cells. Mitochondrial activity, however, revealed a decrease through the MTT assay. DEP/HEX treatment increased viscoelasticity and cytotoxicity (membrane damage), and also activated JNK. Our data suggest that the greater bioavailability of metals could be involved in JNK activation and, consequently, in the reduction of fiber coherence and increase in the viscoelasticity and cytotoxicity of BEAS cells. The adverse findings detected after exposure to crude DEP and to DEP/HEX reflect the toxic potential of diesel compounds. Considering the fact that the cells of the respiratory epithelium are the first line of defense between the body and the environment, our data contribute to a better understanding of the pathways leading to respiratory cell injury and provide evidence for the onset of or worsening of respiratory diseases caused by inorganic compounds present in DEP.


Assuntos
Citoesqueleto/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Material Particulado/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Emissões de Veículos/toxicidade , Brônquios/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Humanos , Compostos Inorgânicos/toxicidade
19.
J Toxicol Environ Health A ; 78(4): 215-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25674825

RESUMO

Diesel exhaust particles (DEP) contain organic and inorganic elements that produce damage to the respiratory epithelium. The aim of this study was to determine the mucus profile of tracheal explants exposed to either crude diesel exhaust particles (DEP) or DEP treated with nitric acid (DEP/NA), with hexane (DEP/HEX), or with methanol (DEP/MET) at concentrations of 50 and 100 µg/ml for 30 and 60 min. Tracheal explants were subjected to morphometric analyses to study acidic (AB+), neutral (PAS+), and mixed (AB+/PAS+) mucus production and vacuolization (V). Incubation with 50 µg/ml crude DEP resulted in a rise in acid mucus production, an increase in vacuolization at 30 min, and reduction in neutral mucus at 30 and 60 min. Tracheas exposed to DEP/MET at 50 µg/ml for 30 or 60 min resulted in a significant decrease in neutral mucus production and an elevation in acid mucus production. DEP/HEX increased vacuolization at both 50 and 100 µg/ml at 30 and 60 min of exposure. Treatment with 50 µg/ml for 30 or 60 min significantly elevated mixed mucus levels. These results suggest that DEP appear to be more toxic when administered in combination with HEX or MET. DEP/MET modified the mucus profile of the epithelium, while DEP/HEX altered mucus extrusion, and these responses might be due to bioavailability of individual elements in DEP fractions.


Assuntos
Mucinas/metabolismo , Traqueia/efeitos dos fármacos , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Animais , Hexanos/química , Técnicas In Vitro , Metanol/química , Camundongos , Camundongos Endogâmicos BALB C , Muco/metabolismo , Ácido Nítrico/química , Traqueia/metabolismo
20.
Environ Toxicol ; 30(11): 1297-308, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24777914

RESUMO

Particulate matter from diesel exhaust (DEP) has toxic properties and can activate intracellular signaling pathways and induce metabolic changes. This study was conducted to evaluate the activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and to analyze the mucin profile (acid (AB(+) ), neutral (PAS(+) ), or mixed (AB/PAS(+) ) mucus) and vacuolization (V) of tracheal explants after treatment with 50 or 100 µg/mL DEP for 30 or 60 min. Western blot analyses showed small increases in ERK1/2 and JNK phosphorylation after 30 min of 100 µg/mL DEP treatment compared with the control. An increase in JNK phosphorylation was observed after 60 min of treatment with 50 µg/mL DEP compared with the control. We did not observe any change in the level of ERK1/2 phosphorylation after treatment with 50 µg/mL DEP. Other groups of tracheas were subjected to histological sectioning and stained with periodic acid-Schiff (PAS) reagent and Alcian Blue (AB). The stained tissue sections were then subjected to morphometric analysis. The results obtained were compared using ANOVA. Treatment with 50 µg/mL DEP for 30 min or 60 min showed a significant increase (p < 0.001) in the amount of acid mucus, a reduction in neutral mucus, a significant reduction in mixed mucus, and greater vacuolization. Our results suggest that compounds found in DEPs are able to activate acid mucus production and enhance vacuolization and cell signaling pathways, which can lead to airway diseases.


Assuntos
Poluentes Atmosféricos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mucinas/metabolismo , Material Particulado/toxicidade , Traqueia/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Muco/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...