Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. j. oral sci ; 12(3): 228-232, July-Sept. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-701311

RESUMO

AIM: To evaluate the loss of applied torque (detorque) values in cast and pre-machined abutments for external hex abutment/implant interface of single implant-supported prostheses subjected to mechanical cycling. METHODS: Ten metal crowns were fabricated using two types of UCLA abutments: cast and pre-machined with metal base in NiCrTi alloy and tightened to regular external hex implants with a titanium alloy screw, with an insertion torque of 32 N.cm, measured with a digital torque gauge. Samples were embedded with autopolymerizing acrylic resin in a stainless steel cylindrical matrix, and positioned in an electromechanical machine. Dynamic oblique loading of 120 N was applied during 5 x 10(5) cycles. Then, each sample was removed from the resin and detorque values were measured using the same digital torque gauge. The difference of the initial (torque) and final (detorque) measurement was registered and the results were expressed as percentage of initial torque. The results of torque loss were expressed as percentage of the initial torque and subjected to statistical analysis by the Student's t-test (p<0.05) for comparisons between the test groups. RESULTS: Statistical analysis demonstrated that mechanical cycling reduced the torque of abutments without significant difference between cast or pre-machined UCLA abutments (p=0.908). CONCLUSIONS: Within the limitations of this in vitro study, it may be concluded that the mechanical cycling, corresponding to one-year use, reduced the torque of the samples regardless if cast or pre-machined UCLA abutments were used.


Assuntos
Dente Suporte , Implantação Dentária/instrumentação , Torque , Titânio
2.
Clin Implant Dent Relat Res ; 15(6): 927-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22236420

RESUMO

PURPOSE: The purpose of this study was to evaluate the rotational freedom between implant and abutment counterpart of two abutments types over external hexagon implants submitted to mechanical cycling. MATERIALS AND METHODS: Ten implants with external hexagon (3.75 mm × 13 mm), five cast abutments, and five premachined abutments both with 4.1 mm plataform size were used in this study. Ten metallic crowns were fabricated using the two types of abutments and were fixed to each implant using titanium screws (Ti6Al4V). Rotational freedom measurements were made before and after the cast procedure and after the mechanical cycling. Groups were classified according to the rotational misfit register using University of California, Los Angeles abutment and implants as new (group 1 = G1); using crowns and implants after crown casting (group 2 = G2); and using crowns and implants after mechanical cycling (group 3 = G3). Oblique loading of 120N at 1.8 Hz and 5 × 10(5) cycles was applied on specimen. RESULTS: Statistical analysis (p < .05) showed that no significant difference was observed when cast abutment was compared with premachined abutment after casting (p = .390) and mechanical cycling (p = .439); however, significant difference was noted before the casting (p = .005) with higher values for the cast abutments. CONCLUSIONS: Within the limitations of this in vitro study, it could be concluded that the abutment type used do not influenced the rotational freedom after casting and the amount of applied cycles (500,000 cycles) was not sufficient to significantly alter the values of rotational freedom at the implant/abutment joint.


Assuntos
Dente Suporte , Implantes Dentários para Um Único Dente , Fenômenos Biomecânicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...