Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1376208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681850

RESUMO

Brugia malayi and B. pahangi, potential zoonotic pathogens transmitted by mosquitoes, are believed to primarily infect dogs and cats as reservoir hosts. Although previous studies have indicated nematode infections in lions, particularly in zoo environments where human contact with these reservoirs is possible, limited documentation exists regarding Brugia sp. infections in lions in Thailand. This study aims to investigate a case of Brugia infection in a lion from a zoo in Thailand. The blood sample was collected and examined from a female lion, using staining methods to morphologically identify microfilaria at the genus level. Subsequently, the PCR was employed targeting specific genes, including mitochondrial 12S rDNA, 18S rDNA, cytochrome oxidase I (COI) and Wolbachia surface protein (wsp), to confirm the species of the filarial nematode parasite. The genetic sequencing results revealed a high similarity (99-100%) to B. malayi for the 12S rDNA, 18S rDNA, COI and wsp genes. Phylogenetic analysis based on nucleotide sequences from the 12S rDNA, 18S rDNA, COI and wsp genes showed that the sequences from this study belong to different clusters. This marks the inaugural documentation of molecular identification of Brugia infection in a lion, signifying that lions could function as reservoirs for this parasite and present a potential public health risk in the region. Our research underscores the effectiveness of molecular techniques and phylogenetic analysis in discerning and comprehending the evolution of filarial parasites. Additionally, it emphasizes the significance of these methods in enhancing the diagnosis, control, and prevention of zoonotic filarial nematode infections.

3.
Sci Rep ; 14(1): 3526, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347146

RESUMO

The crocodile monitor (Varanus salvator) is the most common monitor lizard in Thailand. Based on habitat and food, they have the potential to transmit zoonoses, with a high possibility of infecting ectoparasites and endoparasites. Diseases that could infect crocodile monitors and be transmitted to other animals, including humans. This research aims to identify and evaluate the phylogenetic relationships of Hepatozoon sp. and sheathed microfilaria in crocodile monitors. The phylogenetic analyses of Hepatozoon, based on 18S rRNA, and sheathed microfilaria, based on the COX1 gene, revealed that the Hepatozoon sp. were grouped with H. caimani, while sheathed microfilaria were grouped together with B. timori. This study provides insights into the genetic diversity and host-parasite interactions of hemoparasites in crocodile monitors in Thailand.


Assuntos
Jacarés e Crocodilos , Apicomplexa , Eucoccidiida , Lagartos , Animais , Humanos , Brugia , Filogenia , Tailândia , Apicomplexa/genética , Eucoccidiida/genética , Lagartos/parasitologia , Variação Genética
4.
Infect Genet Evol ; 110: 105425, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36913994

RESUMO

Equine ocular setariasis is mainly caused by Setaria digitata, and the identification of this filarial nematode is based on morphology. However, morphological characterization alone is insufficient for the detection and differentiation of S. digitata from its congeners. In Thailand, the molecular detection of S. digitata is lacking and its genetic diversity is still unknown. This study aimed to phylogenetically characterize equine S. digitata from Thailand based on sequences derived from the mitochondrial cytochrome c oxidase subunit 1 (COI), the mitochondrial small subunit ribosomal DNA (12S rDNA), the nuclear internal transcribed spacer 1 (ITS1) and Wolbachia surface protein (wsp). Five samples of S. digitata were characterized, submitted to the NCBI database, and used for phylogenetic analysis as well as the assessment of similarity, entropy, and haplotype diversity. Phylogenetic analyses revealed that the S. digitata Thai strain was similar to S. digitata from China and Sri Lanka, with 99 to 100% similarity. The entropy and haplotype diversity indicated that the S. digitata Thai isolate was conserved and closely related to S. digitata worldwide. This is the first report on the molecular detection of equine ocular setariasis caused by S. digitata in Thailand.


Assuntos
Variação Genética , Setaríase , Animais , Cavalos/genética , Setaríase/diagnóstico , DNA Ribossômico/genética , Tailândia/epidemiologia , Filogenia
5.
Res Vet Sci ; 155: 88-102, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36657265

RESUMO

Ehrlichia canis is a common tick-borne intracellular pathogen causing canine monocytic ehrlichiosis (CME) in dogs worldwide. The aims of this study were to investigate the genetic diversity and antigenicity of E. canis based on the p28 and trp36 genes in dogs in Thailand. The E. canis p28 and trp36 genes were amplified by the polymerase chain reaction (PCR) and cloned for sequencing and bioinformatic analyses. 36% (44/120) of dog blood samples were positive for E. canis DNA consisting of p28 (31%, 14/44) and trp36 (69%, 30/44) genes with 792 and 882 bp of PCR products size, respectively. The E. canis TRP36 from all Thailand sequences exhibited encoded nine amino acids (TEDSVSAPA) with 11 copies of tandem repeats along the sequences. The phylogenetic trees of E. canis, using the p28 and trp36 genes, exhibited that the Thailand isolates fell into two clades and one clade with similarity ranging from 55.95 to 100% and 100%, respectively. The results of diversity analysis revealed 10 and 20 haplotypes of the p28 and trp 36 genes, respectively. The entropy analysis of the p28 and trp36 nucleic acid sequences showed 442 and 1321 high entropy peaks respectively, whereas those of the P28 and TRP36 amino acid sequences showed 477 and 388 high entropy peaks, respectively. For B-cell epitopes analysis, the conserved amino acid of P28 and TRP36 sequences has been also demonstrated. Therefore, the results could be utilized to improve the understanding of phylogenetic relationship, genetic diversity and antigenicity of E. canis Thailand isolates.


Assuntos
Doenças do Cão , Ehrlichia canis , Ehrlichiose , Animais , Cães , Sequência de Aminoácidos , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Ehrlichia canis/genética , Ehrlichiose/epidemiologia , Ehrlichiose/veterinária , Variação Genética , Filogenia
6.
Front Vet Sci ; 10: 1313783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162478

RESUMO

This study investigates the identification, genetic composition, and placement in the evolutionary tree of a particular nematode species found in a short-finned pilot whale in the Gulf of Thailand. To accomplish this, we utilized various methods, including microscopic observations, molecular techniques, and comparative analyses to better understand the characteristics of this parasite. Initially, we concentrated on studying the 18s rDNA sequence through nested PCR, resulting in a 774-bp product. After conducting a BLASTn analysis, we discovered that there were only a few sequences in the GeneBank that shared similarities with our nematode, particularly with Cyathostomum catinatum, although the percent identity was relatively low. To confirm the uniqueness of our sequence, we constructed a phylogenetic tree that demonstrated a distinct branch for our nematode, suggesting significant genetic differentiation from C. catinatum. Additionally, we sequenced a 399-bp section of the ITS2 gene using PCR, and the resulting data showed a close association with the Strongylidae family, specifically with Cylicocyclus insigne. This was further confirmed by BLASTn and CD-HIT-est results, which indicated a 99 and ~94% sequence homology with C. insigne, respectively. The ITS2 phylogenetic tree also supported the position of our isolated sequence within the Strongylidae family, clustering closely with C.insigne. Our findings shed light on the genetic connections, taxonomy, and evolutionary trends within the Strongylidae family, with a particular focus on the widespread nature of the Cylicocyclus genus. This study emphasizes the importance of utilizing molecular techniques and interdisciplinary approaches to gain insight into nematode diversity, evolution, and ecological dynamics in marine environments.

7.
Front Cell Infect Microbiol ; 12: 1065963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523637

RESUMO

Babesia bovis and B. bigemina are the most common tick-borne parasites that cause bovine babesiosis which effects livestock production, leading to economic losses in tropical and subtropical areas of the world. The aims of this study were to determine the molecular detection, genetic diversity and antigenicity prediction of B. bovis based on spherical body protein 2 (sbp-2) gene and B. bigemina based on rhoptry-associated protein 1a (rap-1a) gene in cattle in Thailand. By PCR assay, the molecular detection of B. bovis and B. bigemina infection revealed levels of 2.58% (4/155) and 5.80% (9/155), respectively. The phylograms showed that B. bovis sbp-2 and B. bigemina rap-1a sequences displayed 5 and 3 clades with similarity ranging between 85.53 to 100% and 98.28 to 100%, respectively, when compared within Thailand strain. Diversity analysis of sbp-2 and rap-1a sequences showed 18 and 4 haplotypes, respectively. The entropy analysis illustrated 104 and 7 polymorphic sites of sbp-2 and rap-1a nucleic acid sequences, respectively, while those of sbp-2 and rap-1a amino acid sequences showed 46 and 4 high entropy peaks, respectively. Motifs analysis exhibited the distribution and conservation among sbp-2 and rap-1a sequences. The continuous and discontinuous B-cell epitopes have also been evaluated in this work. Therefore, our findings may be used to ameliorate the understanding inputs of molecular phylogeny, genetic diversity and antigenicity of B. bovis and B. bigemina Thailand stains.


Assuntos
Babesia bovis , Babesia , Doenças dos Bovinos , Animais , Bovinos , Babesia bovis/genética , Babesia/genética , Tailândia/epidemiologia , Doenças dos Bovinos/parasitologia , Filogenia , Variação Genética
8.
Res Vet Sci ; 152: 372-386, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36108550

RESUMO

A. marginale's major surface protein 2 (MSP2) is an immunodominant protein that is encoded by a multigene family. Phylogenetic analysis revealed that the msp2 sequence Thailand strain was clustered in third clade, with similarity values between 90.4 and 100%. The haplotype diversity showed 10 haplotypes of the msp2 genes. The entropy analysis of the nucleic and amino sequences revealed 289 and 117 high entropy peaks, respectively. Interestingly, one predicted allele belonging to MHC-II represented the hypervariable region (HVR) of MSP2. A. marginale's recombinant MSP2 (rAmMSP2), which has a molecular weight of 42 kDa, was examined in SDS-PAGE. Antigenicity of rAmMSP2 (42 kDa) and AmMSP2 (36 kDa) showed the conserved epitopes. The distribution of AmMSP2 on infected erythrocytes' membrane and outside was demonstrated by immunofluorescence detection. Therefore, the rMSP2 could be utilized in the establishment of immunodiagnostic tools and vaccine approaches for the monitoring of anaplasmosis.


Assuntos
Anaplasma marginale , Anaplasmose , Animais , Anaplasma marginale/genética , Antígenos de Bactérias , Filogenia , Proteínas da Membrana Bacteriana Externa/genética , Anaplasma
9.
Parasite ; 29: 22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35475784

RESUMO

Leucocytozoon sabrazesi is an intracellular haemoprotozoan parasite responsible for leucocytozoonosis, which is transmitted by insect vectors and affects chickens in tropical and subtropical areas in many countries. It causes huge economic losses due to decreased meat and egg production. In the present study, we used nested PCR to determine the genetic diversity of L. sabrazesi based on the cytb, coxI, coxIII and concatenated genes in chickens in Thailand. In addition, we found co-infections between L. sabrazesi and Plasmodium spp. (P. gallinaceum or P. juxtanucleare) in chickens that were not identified by microscopic examination of blood smears. The phylogenetic analysis indicated that L. sabrazesi cytb and coxIII genes were conserved with similarity ranging from 99.9 to 100% and 98 to 100%, respectively whereas the coxI gene was diverse, with similarities ranging from 97 to 100%. These findings ascertained the nucleotide analysis of the cytb, coxI, coxIII and concatenated sequences in which 4, 8, 10 and 9 haplotypes were found, respectively. In addition, it was found that the large number of synonymous substitutions and conservative amino acid replacements in these mitochondrial genes occurred by non-synonymous substitution. The evolutionary analysis of the Ka/Ks ratio supported purifying selection and the negative values of both Fu's Fs and Tajima's D indicate selective sweep especially for the coxI gene. The entropy and Simplot analysis showed that the genetic variation in populations of Plasmodium spp. was higher than in Leucocytozoon. Hence, the nucleotide sequences of three mitochondrial genes could reflect the evolutionary analysis and geographic distribution of this protozoan population that switches hosts during its life cycle.


Title: Diversité génétique moléculaire et analyse bioinformatique de Leucocytozoon sabrazesi basée sur les gènes mitochondriaux cytb, coxI et coxIII et la co-infection avec Plasmodium spp. Abstract: Leucocytozoon sabrazesi est le parasite hémoprotozoaire intracellulaire responsable de la leucocytozoonose, qui est transmise par des insectes vecteurs et affecte les poulets dans les zones tropicales et subtropicales de nombreux pays. Il provoque d'énormes pertes économiques en raison de la diminution de la production de viande et d'œufs. Dans la présente étude, nous avons utilisé la PCR nichée pour déterminer la diversité génétique de L. sabrazesi sur la base des gènes cytb, coxI, coxIII et concaténés chez des poulets en Thaïlande. De plus, nous avons trouvé des co-infections entre L. sabrazesi et Plasmodium spp. (P. gallinaceum ou P. juxtanucleare) chez des poulets, qui n'ont pas été identifiées par l'examen microscopique de frottis sanguins. L'analyse phylogénétique a indiqué que les gènes cytb et coxIII de L. sabrazesi étaient conservés avec une similarité allant respectivement de 99,9 à 100 % et de 98 à 100 %, alors que le gène coxI était diversifié, avec des similarités allant de 97 à 100 %. Ces découvertes ont confirmé l'analyse des nucléotides des séquences cytb, coxI, coxIII et concaténées dans lesquelles 4, 8, 10 et 9 haplotypes ont été trouvés, respectivement. De plus, il a été constaté que le grand nombre de substitutions synonymes et de remplacements conservateurs d'acides aminés dans ces gènes mitochondriaux se produisaient par substitution non synonyme. L'analyse évolutive du rapport Ka/Ks a soutenu la sélection purificatrice et les valeurs négatives des Fs de Fu et D de Tajima indiquent un balayage sélectif, en particulier pour le gène coxI. L'entropie et l'analyse Simplot ont montré que la variation génétique de la population de Plasmodium spp. était plus élevée que pour Leucocytozoon. Par conséquent, les séquences nucléotidiques de trois gènes mitochondriaux pourraient refléter l'analyse évolutive et la répartition géographique de cette population de protozoaires qui changent d'hôte au cours de leur cycle de vie.


Assuntos
Coinfecção , Haemosporida , Plasmodium , Animais , Galinhas/parasitologia , Coinfecção/veterinária , Biologia Computacional , Genes Mitocondriais , Haemosporida/genética , Biologia Molecular , Filogenia , Plasmodium/genética
10.
Parasitology ; 149(1): 65-75, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35184783

RESUMO

There was little information regarding the occurrence of canine vector-borne disease (CVBDs) in shelter dogs in Thailand. This work is the first report regarding a molecular method used to determine the occurrence and genetic diversity of three canine tick-borne pathogens (TBPs) (Hepatozoon canis, Anaplasma platys and Ehrlichia canis) in blood samples from 275 shelter dogs in the north and central areas of Thailand. The PCR results based on the 18S rRNA and 16S rRNA genes showed that 71 (25.82%) dogs were positive for at least a TBP. The overall occurrence rates of H. canis, A. platys and E. canis infections were 1.81, 16.36 and 7.64%, respectively. For the phylogenetic analysis, A. platys 16S rRNA gene was genetically diverse, while H. canis 18S rRNA and E. canis 16S rRNA genes were conserved. The haplotype diversity exhibited 12 and 2 haplotypes as well as 78 and 178 polymorphic sites of A. platys and E. canis 16S rRNA genes, respectively. Our findings could be used to improve the understanding of phylogeny and genetic diversity of TBP rRNA genes and used to ameliorate the diagnosis and control programmes for the diseases in Thailand.


Assuntos
Anaplasmose , Doenças do Cão , Ehrlichiose , Doenças Transmitidas por Carrapatos , Carrapatos , Anaplasma/genética , Anaplasmose/epidemiologia , Animais , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Cães , Ehrlichiose/epidemiologia , Ehrlichiose/veterinária , Variação Genética , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Tailândia/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária
11.
Vet Microbiol ; 262: 109236, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34626905

RESUMO

Anaplasma marginale is an intracellular rickettsial bacterium causing anaplasmosis in ruminants. A. marginale is transmitted biologically by ticks and mechanically by blood-sucking vectors. Anaplasmosis occurs in tropical and subtropical areas of the world. This disease causes huge economic losses due to decreasing meat yield and milk production. The aims of this study were to determine the genetic diversity and antigenicity of A. marginale based on the msp1a and msp1b genes in cattle in Thailand. The A. marginale msp1a and msp1b genes were amplified by the polymerase chain reaction (PCR). There have been four copies of MSP1a tandem repeats among A. marginale Thailand strain, and thirteen different MSP1a tandem repeats were found including repeats B, 25, 27, M, 3, S, C, H, ß, 80, 4, TH1 and TH2. Notably, this study showed two copies of the novel conserved tandem sequences namely Thailand Type 1 (TH1) and Type 2 (TH2). The phylogenetic analysis revealed that A. marginale msp1a and msp1b genes were genetically diverse and showed 9 and 5 clades with similarity ranging from 98 to 100% and 79.5 to 100%, respectively, when compared within the isolates of this study. The results of diversity analysis showed 18 and 16 haplotypes of the msp1a and msp1b genes, respectively. The entropy analyses of msp1a and msp1b nucleic acid sequences showed 39 and 900 high entropy peaks with values ranging from 0.35 to 0.85 and from 0.41 to 1.48, respectively, while those of MSP1a and MSP1b amino acid sequences exhibited 75 and 72 high entropy peaks with values ranging from 0.35 to 1.06 and from 0.41 to 1.55, respectively. In addition, B-cell and T-cell epitopes have also been investigated in this study. Hence, our results could be employed to improve the insight input of molecular phylogenetics, genetic diversity and antigenicity of A. marginale Thailand strain.


Assuntos
Anaplasma marginale , Anaplasmose , Proteínas da Membrana Bacteriana Externa , Doenças dos Bovinos , Anaplasma marginale/classificação , Anaplasma marginale/genética , Anaplasmose/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Bovinos , Doenças dos Bovinos/microbiologia , Filogenia
12.
Sci Rep ; 11(1): 16686, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404893

RESUMO

Leucocytozoon sabrazesi is the intracellular protozoa of leucocytozoonosis, which is transmitted by the insect vectors and affects chickens in most subtropical and tropical regions of the globe, except South America, and causing enormous economic losses due to decreasing meat yield and egg production. In this study, L. sabrazesi gametocytes have been observed in the blood smears, and molecular methods have been used to analyse the occurrence and genetic diversity of L. sabrazesi in blood samples from 313 chickens raised in northern, western and southern parts of Thailand. The nested polymerase chain reaction (nested PCR) assay based on the cytb gene revealed that 80.51% (252/313) chickens were positive of L. sabrazesi. The phylogenetic analysis indicated that L. sabrazesi cytb gene is conserved in Thailand, showed 2 clades and 2 subclades with similarity ranged from 89.5 to 100%. The diversity analysis showed 13 and 18 haplotypes of the sequences from Thailand and from other countries, respectively. The entropy analyses of nucleic acid sequences showed 26 high entropy peaks with values ranging from 0.24493 to 1.21056, while those of amino acid sequences exhibited 5 high entropy peaks with values ranging from 0.39267 to 0.97012. The results; therefore, indicate a high molecular occurrence of L. sabrazesi in chicken blood samples with the associated factors that is statistically significant (p < 0.05). Hence, our results could be used to improve the immunodiagnostic methods and to find appropriate preventive control strategies or vaccination programs against leucocytozoonosis in order to mitigate or eliminate the harmful impact of this infection on chicken industry.


Assuntos
Apicomplexa/genética , Doenças das Aves Domésticas/parasitologia , Infecções Protozoárias em Animais/parasitologia , Animais , Galinhas/parasitologia , Variação Genética , Filogenia , Doenças das Aves Domésticas/epidemiologia , Infecções Protozoárias em Animais/epidemiologia , Tailândia/epidemiologia
13.
Acta Trop ; 220: 105933, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33895143

RESUMO

Anaplasmosis is a tick-borne disease caused by the intracellular rickettsia Anaplasma marginale, which affects cattle and other ruminants in both tropical and subtropical regions of the world, and also causing tremendous economic losses due to decreasing livestock production. The major surface protein 5 (MSP5) of A. marginale is an immunodominant and highly conserved protein encoding by a single gene. In the present study, the complete full-length of the msp5 coding sequence of A. marginale Thailand strain was cloned and determined at a size of 633 bp. Phylogenetic analysis based on neigh-joining (NJ) method showed that the msp5 sequence Thailand strains were clearly distributed in 3rd clade and conserved when compared with other strains. The results showed 9 haplotypes of the msp5 genes, and the entropy analysis of MSP5 amino acid sequences displayed 92 high entropy peaks with value ranging from 0.198 to 0.845 Additionally, a recombinant MSP5 of A. marginale (rAmMSP5) was over-expressed in the E. coli BL21 Star™ (DE3) host cell, affinity purified, and found in SDS-PAGE at a molecular weight of 26 kDa. The antigenicity of rAmMSP5 (26 kDa) and AmMSP5 (19 kDa) was recognized by rabbit anti-rAmMSP5 antisera and A. marginale-infected cattle sera. Both rAmMSP5 and AmMSP5 were perceived by these sera manifesting that recombinant and native AmMSP5 have conserved epitopes. Immunofluorescence technique using rabbit anti-rAmMSP5 antisera exhibited that the AmMSP5 is distributed on both the membrane and the outside of infected erythrocytes. Therefore, the recombinant MSP5 could be used for the development of immunodiagnostic assays and vaccine purposes for controlling anaplasmosis.


Assuntos
Anaplasma marginale/genética , Anaplasma marginale/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Sequência de Aminoácidos , Anaplasmose/microbiologia , Animais , Epitopos , Filogenia , Coelhos , Proteínas Recombinantes/imunologia , Tailândia , Doenças Transmitidas por Carrapatos
14.
Acta Trop ; 205: 105338, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31953063

RESUMO

Anaplasma marginale is the rickettsial agent of anaplasmosis, a tick-borne disease, which affects cattle and other ruminants in tropical and subtropical areas of the world, and causing huge economic losses because of decreasing meat and milk production. In the present study, molecular methods have been used to determine the occurrence and genetic diversity of A. marginale, based on the genes encoding the major surface proteins (msps) genes, in blood samples from 520 cattle and 121 buffaloes in the north and northeastern regions of Thailand. The polymerase chain reaction (PCR) results based on the msp4 gene indicated that 66 (10.30%) cattle were positive for A. marginale, whereas no positive result was obtained from buffaloes. The phylogenetic analysis based on the maximum likelihood method using 13, 29 and 27 nucleotide sequences from msp2, msp4, msp5 clones, respectively, revealed that the sequences detected in this study are obviously distributed in different clusters. The sequence analysis demonstrated that msp2 gene is genetically diverse, while msp4 and msp5 genes are conserved in Thailand. These findings corroborated the diversity analysis of the same sequences, which showed 13, 27 and 27 haplotypes of the msp2, msp4 and msp5 genes, respectively. In addition, the entropy analyses of amino acid sequences exhibited 127, 75 and 51 high entropy peaks with values ranging from 0.27119 to 2.45831, from 0.14999 to 2.17552 and from 0.15841 to 1.05453 for MSP2, MSP4 and MSP5, respectively. Therefore, the results indicate a low molecular occurrence of A. marginale in cattle blood samples in Thailand. From these results; however, a high degree of genetic diversity was observed in the analyzed A. marginale population. Hence, our finding could be used to improve the immunodiagnostics and vaccination programs for anaplasmosis.


Assuntos
Anaplasma marginale/genética , Proteínas de Bactérias/genética , Búfalos/microbiologia , Bovinos/microbiologia , Anaplasma marginale/isolamento & purificação , Animais , Variação Genética
15.
Acta Trop ; 197: 105047, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31158343

RESUMO

Anaplasma marginale is the rickettsia which causes the bovine anaplasmosis. The distribution of A. marginale is both tropical and subtropical regions of the world. The major surface protein 4 (MSP4) of this parasite was identified as an immunodominant protein. In this study, the full length of DNA encoding A. marginale MSP4 (AmMSP4) was cloned from the parasites. The open reading frame of msp4 coding sequence of Thailand strain is 849 bp. Phylogenetic analysis revealed that the msp4 coding sequence of A. marginale was highly conserved when compared with Anaplasma phagocytophilum. The recombinant plasmid was further transformed into the BL21-CodonPlus (DE3)-RIPL competent cells for over-expression of the recombinant major surface protein 4 of A. marginale (rAmMSP4). Sera from rabbit immunized with rAmMSP4 and from cattle infected with A. marginale were used to study the antigenicity of rAmMSP4 (35 kDa) and AmMSP4 (31 kDa). Both rAmMSP4 and AmMSP4 were recognized by these sera showing that recombinant and native AmMSP4 have conserved epitopes. Localization of Anaplasma parasites by immunofluorescence showed these parasites are distributed on both the membrane and the outside of infected erythrocytes. Regarding antigenicity, recombinant MSP4 could be used for immunodiagnostic purposes and as a possible vaccine candidate against anaplasmosis.


Assuntos
Anaplasma marginale/metabolismo , Anaplasmose/microbiologia , Proteínas de Bactérias/metabolismo , Doenças dos Bovinos/microbiologia , Proteínas de Membrana/metabolismo , Doenças Transmitidas por Carrapatos/microbiologia , Anaplasma marginale/genética , Anaplasmose/genética , Anaplasmose/imunologia , Animais , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/imunologia , Filogenia , Coelhos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...