Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107620

RESUMO

A major complication of hemophilia A therapy is the development of alloantibodies (inhibitors) that neutralize intravenously administered coagulation factor VIII (FVIII). Immune tolerance induction therapy (ITI) by repetitive FVIII injection can eradicate inhibitors, and thereby reduce morbidity and treatment costs. However, ITI success is difficult to predict and the underlying immunological mechanisms are unknown. Here, we demonstrated that immune tolerance against FVIII under nonhemophilic conditions was maintained by programmed death (PD) ligand 1-expressing (PD-L1-expressing) regulatory T cells (Tregs) that ligated PD-1 on FVIII-specific B cells, causing them to undergo apoptosis. FVIII-deficient mice injected with FVIII lacked such Tregs and developed inhibitors. Using an ITI mouse model, we found that repetitive FVIII injection induced FVIII-specific PD-L1+ Tregs and reengaged removal of inhibitor-forming B cells. We also demonstrated the existence of FVIII-specific Tregs in humans and showed that such Tregs upregulated PD-L1 in patients with hemophilia after successful ITI. Simultaneously, FVIII-specific B cells upregulated PD-1 and became killable by Tregs. In summary, we showed that PD-1-mediated B cell tolerance against FVIII operated in healthy individuals and in patients with hemophilia A without inhibitors, and that ITI reengaged this mechanism. These findings may impact monitoring of ITI success and treatment of patients with hemophilia A.


Assuntos
Linfócitos B , Antígeno B7-H1 , Fator VIII , Hemofilia A , Tolerância Imunológica , Isoanticorpos , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Fator VIII/administração & dosagem , Fator VIII/imunologia , Hemofilia A/tratamento farmacológico , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/imunologia , Modelos Animais de Doenças , Isoanticorpos/imunologia
2.
Arthritis Rheumatol ; 74(6): 1013-1026, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34962361

RESUMO

OBJECTIVE: To characterize the role of interleukin-1ß (IL-1ß) and microvascular endothelial cells (MVECs) in the generation of alternatively activated macrophages in the skin, and to explore their role in the development of skin fibrosis in patients with systemic sclerosis (SSc; scleroderma). METHODS: Conditioned medium prepared with MVECs purified from the skin of healthy donors and the skin of SSc patients was used to generate monocyte-derived macrophages. Flow cytometry, multiplex protein assessment, real-time quantitative polymerase chain reaction, and tissue immunofluorescence were used to characterize MVEC-induced polarization of alternatively activated macrophages. Coculture experiments were conducted to assess the role of MVEC-induced alternatively activated macrophages in fibroblast activation. Alternatively activated macrophages were characterized in the skin of healthy donors and SSc patients using multiparametric immunofluorescence and multiplex immunostaining for gene expression. Based on our in vitro data, we defined a supervised macrophage gene signature score to assess correlation between the macrophage score and clinical features in patients with SSc, using the Spearman's test. RESULTS: IL-1ß-activated MVECs from SSc patients induced monocytes to differentiate into DC-SIGN+ alternatively activated macrophages producing high levels of CCL18, CCL2, and CXCL8 but low levels of IL-10. DC-SIGN+ alternatively activated macrophages showed significant enhancing effects in promoting the production of proinflammatory fibroblasts and were found to be enriched in perivascular regions of the skin of SSc patients who had a high fibrosis severity score. A novel skin transcriptomic macrophage signature, defined from our in vitro findings, correlated with the extent of skin fibrosis (Spearman's r = 0.6, P = 0.0018) and was associated with early disease manifestations and lung involvement in patients with SSc. CONCLUSION: Our findings shed new light on the vicious circle implicating unabated IL-1ß secretion, MVEC activation, and the generation of DC-SIGN+ alternatively activated macrophages in the development of skin fibrosis in patients with SSc.


Assuntos
Moléculas de Adesão Celular , Células Endoteliais , Interleucina-1beta , Lectinas Tipo C , Receptores de Superfície Celular , Escleroderma Sistêmico , Moléculas de Adesão Celular/imunologia , Células Endoteliais/metabolismo , Fibrose , Humanos , Interleucina-1beta/imunologia , Lectinas Tipo C/imunologia , Ativação de Macrófagos , Macrófagos , Receptores de Superfície Celular/imunologia , Escleroderma Sistêmico/patologia , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...