Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 169: 439-47, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25236249

RESUMO

Dry matter (DM), total phenolics, flavonoids, carotenoid contents, and antioxidant activity of 12 purslane accessions were investigated against five levels of salinity (0, 8, 16, 24 and 32dSm(-1)). In untreated plants, the DM contents ranged between 8.0-23.4g/pot; total phenolics contents (TPC) between 0.96-9.12mgGAEg(-1)DW; total flavonoid contents (TFC) between 0.15-1.44mgREg(-1)DW; and total carotenoid contents (TCC) between 0.52BCEg(-1)DW. While FRAP activity ranged from 8.64-104.21mgTEg(-1)DW (about 12-fold) and DPPH activity between 2.50-3.30mgmL(-1) IC50 value. Different levels of salinity treatment resulted in 8-35% increases in TPC; about 35% increase in TFC; and 18-35% increases in FRAP activity. Purslane accessions Ac4, Ac5, Ac6 and Ac8 possessed potentials for salinity-induced augmented production of bioactive compounds which in turn can be harnessed for possible human health benefits.


Assuntos
Portulaca/química , Carotenoides/análise , Flavonoides/análise , Fenóis/análise , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Salinidade
2.
ScientificWorldJournal ; 2013: 695404, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260020

RESUMO

This study investigated the allelopathic effect of Axonopus compressus litter on Asystasia gangetica and Pennisetum polystachion. In experiment 1 the bioassays with 0, 10, 30, and 50 g L⁻¹ of aqueous A. compressus litter leachate were conducted. Experiment 2 was carried out by incorporating 0, 10, 20, 30, 40, and 50 g L⁻¹ of A. compressus litter leachate into soil. In experiment 3, the fate of A. compressus litter leachate phenolics in the soil was investigated. A. compressus leachates did not affect the germination percentage of A. gangetica and P. polystachion, but delayed germination of A. gangetica seeds and decreased seed germination time of P. polystachion. A. compressus litter leachates affected weeds hypocotyl length. Hypocotyl length reductions of 18 and 31% were observed at the highest concentration (50 g L⁻¹) compared to the control in A. gangetica and P. polystachion, respectively. When concentration of A. compressus litter leachate-amended soil increased A. gangetica and P. polystachion seedling shoot length, root length, seedling weight and chlorophyll concentration were not affected. The 5-week decomposition study of A. compressus showed that the phenolic compounds in A. compressus litter abruptly decreased about 52% after two weeks and remained steady until the end of the incubation.


Assuntos
Alelopatia/fisiologia , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Solo , Controle de Plantas Daninhas/métodos
3.
ScientificWorldJournal ; 2013: 916408, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223513

RESUMO

Till now, herbicide seems to be a cost effective tool from an agronomic view point to control weeds. But long term efficacy and sustainability issues are the driving forces behind the reconsideration of herbicide dependent weed management strategy in rice. This demands reappearance of physical and cultural management options combined with judicious herbicide application in a more comprehensive and integrated way. Keeping those in mind, some agronomic tools along with different manual weeding and herbicides combinations were evaluated for their weed control efficacy in rice under aerobic soil conditions. Combination of competitive variety, higher seeding rate, and seed priming resulted in more competitive cropping system in favor of rice, which was reflected in lower weed pressure, higher weed control efficiency, and better yield. Most of the herbicides exhibited excellent weed control efficiency. Treatments comprising only herbicides required less cost involvement but produced higher net benefit. On the contrary, treatments comprising both herbicide and manual weeding required high cost involvement and thus produced lower net benefit. Therefore, adoption of competitive rice variety, higher seed rate, and seed priming along with spraying different early-postemergence herbicides in rotation at 10 days after seeding (DAS) followed by a manual weeding at 30 DAS may be recommended from sustainability view point.


Assuntos
Herbicidas/farmacologia , Oryza/crescimento & desenvolvimento , Plantas Daninhas/efeitos dos fármacos , Controle de Plantas Daninhas/métodos
4.
ScientificWorldJournal ; 2013: 308646, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24163618

RESUMO

Axonopus compressus is one of the native soft grass species in oil palm in Malaysia which can be used as a cover crop. The competitive ability of A. compressus to overcome A. gangetica was studied using multiple-density, multiple-proportion replacements series under a glasshouse and full sunlight conditions in a poly bag for 10 weeks. A. compressus produced more dry weight and leaf area when competing against A. gangetica than in monoculture at both densities in the full sunlight and at high density in the shade. Moreover, the relative yield and relative crowding coefficients also indicated A. compressus is a stronger competitor than A. gangetica at both densities in the full sunlight and high density in the shade. It seemed that A. gangetica plants in the shade did not compete with each other and were more competitive against A. compressus as could influence A. compressus height in the shade. It is concluded that although suppression of A. gangetica by A. compressus occurred under full sunlight, irrespective of plant density, this ability reduced under shade as A. compressus density decreased. The result suggests that A. compressus in high density could be considered as a candidate for cover crops under oil palm canopy.


Assuntos
Acanthaceae/crescimento & desenvolvimento , Luz Solar , Acanthaceae/efeitos da radiação
5.
Biomed Res Int ; 2013: 963525, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484164

RESUMO

Submergence or flood is one of the major harmful abiotic stresses in the low-lying countries and crop losses due to waterlogging are considerably high. Plant breeding techniques, conventional or genetic engineering, might be an effective and economic way of developing crops to grow successfully in waterlogged condition. Marker assisted selection (MAS) is a new and more effective approach which can identify genomic regions of crops under stress, which could not be done previously. The discovery of comprehensive molecular linkage maps enables us to do the pyramiding of desirable traits to improve in submergence tolerance through MAS. However, because of genetic and environmental interaction, too many genes encoding a trait, and using undesirable populations the mapping of QTL was hampered to ensure proper growth and yield under waterlogged conditions Steady advances in the field of genomics and proteomics over the years will be helpful to increase the breeding programs which will help to accomplish a significant progress in the field crop variety development and also improvement in near future. Waterlogging response of soybean and major cereal crops, as rice, wheat, barley, and maize and discovery of QTL related with tolerance of waterlogging, development of resistant variety, and, in addition, future prospects have also been discussed.


Assuntos
Cruzamento/métodos , Produtos Agrícolas/genética , Interação Gene-Ambiente , Locos de Características Quantitativas , Estresse Fisiológico , Produtos Agrícolas/crescimento & desenvolvimento
6.
ScientificWorldJournal ; 2012: 603043, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22778701

RESUMO

Critical period of weed control is the foundation of integrated weed management and, hence, can be considered the first step to design weed control strategy. To determine critical period of weed control of aerobic rice, field trials were conducted during 2010/2011 at Universiti Putra Malaysia. A quantitative series of treatments comprising two components, (a) increasing duration of weed interference and (b) increasing length of weed-free period, were imposed. Critical period was determined through Logistic and Gompertz equations. Critical period varied between seasons; in main season, it started earlier and lasted longer, as compared to off-season. The onset of the critical period was found relatively stable between seasons, while the end was more variable. Critical period was determined as 7-49 days after seeding in off-season and 7-53 days in main season to achieve 95% of weed-free yield, and 23-40 days in off-season and 21-43 days in main season to achieve 90% of weed-free yield. Since 5% yield loss level is not practical from economic view point, a 10% yield loss may be considered excellent from economic view point. Therefore, aerobic rice should be kept weed-free during 21-43 days for better yield and higher economic return.


Assuntos
Agricultura/métodos , Clima , Oryza/crescimento & desenvolvimento , Plantas Daninhas/fisiologia , Controle de Plantas Daninhas/métodos , Aerobiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...