Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(24): eadm8449, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865459

RESUMO

The accumulation of protein aggregates is a hallmark of many diseases, including Alzheimer's disease. As a major pillar of the proteostasis network, autophagy mediates the degradation of protein aggregates. The autophagy cargo receptor p62 recognizes ubiquitin on proteins and cooperates with TAX1BP1 to recruit the autophagy machinery. Paradoxically, protein aggregates are not degraded in various diseases despite p62 association. Here, we reconstituted the recognition by the autophagy receptors of physiological and pathological Tau forms. Monomeric Tau recruits p62 and TAX1BP1 via the sequential actions of the chaperone and ubiquitylation machineries. In contrast, Tau fibrils from Alzheimer's disease brains are recognized by p62 but fail to recruit TAX1BP1. This failure is due to the masking of fibrils ubiquitin moieties by p62. Tau fibrils are resistant to deubiquitylation, and, thus, this nonproductive interaction of p62 with the fibrils is irreversible. Our results shed light on the mechanism underlying autophagy evasion by protein aggregates and their consequent accumulation in disease.


Assuntos
Autofagia , Proteína Sequestossoma-1 , Ubiquitinação , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/química , Proteína Sequestossoma-1/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Ligação Proteica , Agregados Proteicos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ubiquitina/metabolismo , Proteínas de Neoplasias
2.
Cell Death Discov ; 10(1): 128, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467608

RESUMO

Ubiquitin-specific peptidase 22 (USP22) is a deubiquitinating enzyme (DUB) that underlies tumorigenicity, proliferation, cell death and differentiation through deubiquitination of histone and non-histone targets. Ubiquitination determines stability, localization and functions of cell fate proteins and controls cell-protective signaling pathways to surveil cell cycle progression. In a variety of carcinomas, lymphomas and leukemias, ubiquitination regulates the tumor-suppressive functions of the promyelocytic leukemia protein (PML), but PML-specific DUBs, DUB-controlled PML ubiquitin sites and the functional consequences of PML (de)ubiquitination remain unclear. Here, we identify USP22 as regulator of PML and the oncogenic acute promyelocytic leukemia (APL) fusion PML-RARα protein stability and identify a destabilizing role of PML residue K394. Additionally, loss of USP22 upregulates interferon (IFN) and IFN-stimulated gene (ISG) expression in APL and induces PML-RARα stabilization and a potentiation of the cell-autonomous sensitivity towards all-trans retinoic acid (ATRA)-mediated differentiation. Our findings imply USP22-dependent surveillance of PML-RARα stability and IFN signaling as important regulator of APL pathogenesis, with implications for viral mimicry, differentiation and cell fate regulation in other leukemia subtypes.

3.
Nat Commun ; 14(1): 8364, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102139

RESUMO

Selective autophagy of the endoplasmic reticulum (ER), known as ER-phagy, is an important regulator of ER remodeling and essential to maintain cellular homeostasis during environmental changes. We recently showed that members of the FAM134 family play a critical role during stress-induced ER-phagy. However, the mechanisms on how they are activated remain largely unknown. In this study, we analyze phosphorylation of FAM134 as a trigger of FAM134-driven ER-phagy upon mTOR (mechanistic target of rapamycin) inhibition. An unbiased screen of kinase inhibitors reveals CK2 to be essential for FAM134B- and FAM134C-driven ER-phagy after mTOR inhibition. Furthermore, we provide evidence that ER-phagy receptors are regulated by ubiquitination events and that treatment with E1 inhibitor suppresses Torin1-induced ER-phagy flux. Using super-resolution microscopy, we show that CK2 activity is essential for the formation of high-density FAM134B and FAM134C clusters. In addition, dense clustering of FAM134B and FAM134C requires phosphorylation-dependent ubiquitination of FAM134B and FAM134C. Treatment with the CK2 inhibitor SGC-CK2-1 or mutation of FAM134B and FAM134C phosphosites prevents ubiquitination of FAM134 proteins, formation of high-density clusters, as well as Torin1-induced ER-phagy flux. Therefore, we propose that CK2-dependent phosphorylation of ER-phagy receptors precedes ubiquitin-dependent activation of ER-phagy flux.


Assuntos
Autofagia , Proteínas de Membrana , Fosforilação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação
4.
Nat Commun ; 14(1): 1227, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869098

RESUMO

Single ribonucleoside monophosphates (rNMPs) are transiently present in eukaryotic genomes. The RNase H2-dependent ribonucleotide excision repair (RER) pathway ensures error-free rNMP removal. In some pathological conditions, rNMP removal is impaired. If these rNMPs hydrolyze during, or prior to, S phase, toxic single-ended double-strand breaks (seDSBs) can occur upon an encounter with replication forks. How such rNMP-derived seDSB lesions are repaired is unclear. We expressed a cell cycle phase restricted allele of RNase H2 to nick at rNMPs in S phase and study their repair. Although Top1 is dispensable, the RAD52 epistasis group and Rtt101Mms1-Mms22 dependent ubiquitylation of histone H3 become essential for rNMP-derived lesion tolerance. Consistently, loss of Rtt101Mms1-Mms22 combined with RNase H2 dysfunction leads to compromised cellular fitness. We refer to this repair pathway as nick lesion repair (NLR). The NLR genetic network may have important implications in the context of human pathologies.


Assuntos
Redes Reguladoras de Genes , Ribonucleases , Fase S , Replicação do DNA , Endorribonucleases , Genômica , Saccharomyces cerevisiae
5.
Matrix Biol ; 100-101: 39-53, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33600946

RESUMO

Autophagy is a quality control pathway that maintains cellular homeostasis by recycling surplus and dysregulated cell organelles. Identification of selective autophagy receptors demonstrated the existence of pathways that selectively degrade organelles, protein aggregates or pathogens. Interestingly, different types of DNA damage can induce autophagy and autophagy-deficiency leads to genomic instability. Recent studies provided first insights into the pathways that connect autophagy with the DNA damage response. However, the physiological role of autophagy and the identity of its targets after DNA damage remain enigmatic. In this review, we summarize recent literature on the targets of autophagy and mechanisms that lead to its activation after DNA damage, and discuss potential consequences of DNA damage-induced autophagy.


Assuntos
Dano ao DNA , Reparo do DNA , Autofagia , Instabilidade Genômica , Humanos
6.
EMBO Rep ; 22(2): e50163, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369872

RESUMO

Dynamic control of ubiquitination by deubiquitinating enzymes is essential for almost all biological processes. Ubiquitin-specific peptidase 22 (USP22) is part of the SAGA complex and catalyzes the removal of mono-ubiquitination from histones H2A and H2B, thereby regulating gene transcription. However, novel roles for USP22 have emerged recently, such as tumor development and cell death. Apart from apoptosis, the relevance of USP22 in other programmed cell death pathways still remains unclear. Here, we describe a novel role for USP22 in controlling necroptotic cell death in human tumor cell lines. Loss of USP22 expression significantly delays TNFα/Smac mimetic/zVAD.fmk (TBZ)-induced necroptosis, without affecting TNFα-mediated NF-κB activation or extrinsic apoptosis. Ubiquitin remnant profiling identified receptor-interacting protein kinase 3 (RIPK3) lysines 42, 351, and 518 as novel, USP22-regulated ubiquitination sites during necroptosis. Importantly, mutation of RIPK3 K518 reduced necroptosis-associated RIPK3 ubiquitination and amplified necrosome formation and necroptotic cell death. In conclusion, we identify a novel role of USP22 in necroptosis and further elucidate the relevance of RIPK3 ubiquitination as crucial regulator of necroptotic cell death.


Assuntos
Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Ubiquitina Tiolesterase , Apoptose/genética , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Ubiquitinação
7.
J Mol Biol ; 432(4): 1216-1234, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31874152

RESUMO

Autophagy is dependent on appropriate lipid supply for autophagosome formation. The regulation of lipid acquisition and the autophagy network response to lipid-limiting conditions are mostly elusive. Here, we show that the knockout of the RAB GTPase RAB18 interferes with lipid droplet catabolism, causing an impaired fatty acid release. The resulting reduced lipid-droplet-derived lipid availability influences autophagy and provokes adaptive modifications of the autophagy network. These adjustments include increased expression and phosphorylation of ATG2B as well as augmented formation of the ATG12-ATG5 conjugate. Moreover, ATG9A shows an enhanced phosphorylation at amino acid residues tyrosine 8 and serine 14, resulting in an increased ATG9A trafficking. Via pharmacological inhibition of Y8 phosphorylation, we demonstrate that this ATG9A modification is important to maintain basal autophagy under RAB18 knockout conditions. However, while the network adaptations are sufficient to maintain basal autophagic activity, they are incapable of ensuring autophagy induction upon starvation, which is characterized by an enhanced lipid demand. Thus, here, we define the molecular role of RAB18 in connecting lipid droplets and autophagy, emphasize the significance of lipid droplets as lipid sources for the degradative pathway, and uncover a remarkable autophagy network plasticity, including phosphorylation-dependent ATG9A activation, to compensate reduced lipid availability in order to rescue basal autophagic activity.


Assuntos
Gotículas Lipídicas/química , Proteínas rab de Ligação ao GTP/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Células HeLa , Humanos , Immunoblotting , Imuno-Histoquímica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Proteínas rab de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/metabolismo
8.
Methods Mol Biol ; 1880: 691-701, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610732

RESUMO

Selective autophagy enables degradation of specific cargo such as protein aggregates or organelles and thus plays an essential role in the regulation of cellular homeostasis. Cargo specificity is achieved on the level of autophagy receptors that concurrently bind the cargo and the autophagosomal membrane. Recent studies have demonstrated that selective autophagy is tightly regulated by posttranslational modifications of autophagy receptors, in particular protein phosphorylation. Phosphorylation of autophagy receptors by different kinases, including Tank-binding kinase (TBK1), can increase their affinity toward the cargo or autophagosomes and thereby regulate the specificity and activity of selective autophagy depending on the cellular condition.Here, we report an approach for quantitative analysis of phosphorylation sites on autophagy receptors using mass spectrometry-based proteomics. In this protocol, GFP-tagged autophagy receptors are purified based on the high-affinity binding between GFP and GFP-Trap agarose. Interaction partners and background binders are subsequently removed by washes under denaturing conditions to obtain a pure fraction of the bait protein, thereby reducing the complexity of the analyzed sample. The bait protein is then digested on-bead, and peptides are analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The described approach permits systematic identification and quantification of phosphorylation sites on autophagy receptors and other autophagic components. In addition to phosphorylation, this protocol is suitable for investigating other posttranslational modifications, including protein ubiquitylation.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/análise , Autofagia/fisiologia , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Isótopos de Carbono/química , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Células HEK293 , Humanos , Isótopos de Nitrogênio/química , Peptídeos/análise , Peptídeos/química , Peptídeos/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Proteômica/instrumentação , Espectrometria de Massas em Tandem/instrumentação
9.
Nat Commun ; 9(1): 1017, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523821

RESUMO

Ultraviolet (UV) light radiation induces the formation of bulky photoproducts in the DNA that globally affect transcription and splicing. However, the signaling pathways and mechanisms that link UV-light-induced DNA damage to changes in RNA metabolism remain poorly understood. Here we employ quantitative phosphoproteomics and protein kinase inhibition to provide a systems view on protein phosphorylation patterns induced by UV light and uncover the dependencies of phosphorylation events on the canonical DNA damage signaling by ATM/ATR and the p38 MAP kinase pathway. We identify RNA-binding proteins as primary substrates and 14-3-3 as direct readers of p38-MK2-dependent phosphorylation induced by UV light. Mechanistically, we show that MK2 phosphorylates the RNA-binding subunit of the NELF complex NELFE on Serine 115. NELFE phosphorylation promotes the recruitment of 14-3-3 and rapid dissociation of the NELF complex from chromatin, which is accompanied by RNA polymerase II elongation.


Assuntos
Dano ao DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA/metabolismo , Raios Ultravioleta/efeitos adversos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Fosforilação , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
10.
ACS Synth Biol ; 3(12): 986-9, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524106

RESUMO

The ability to control mammalian genes in a synergistic mode using synthetic transcription factors is highly desirable in fields of tissue engineering, stem cell reprogramming and fundamental research. In this study, we developed a standardized toolkit utilizing an engineered CRISPR/Cas9 system that enables customizable gene regulation in mammalian cells. The RNA-guided dCas9 protein was implemented as a programmable transcriptional activator or repressor device, including targeting of endogenous loci. For facile assembly of single or multiple CRISPR RNAs, our toolkit comprises a modular RNAimer plasmid, which encodes the required noncoding RNA components.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação da Expressão Gênica/genética , Engenharia Genética/métodos , Células HEK293 , Humanos , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...