Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540813

RESUMO

Within the various approaches to organic waste handling, composting has been recognized as an acceptable method to valorize organic waste. Composting is an aerobic technique of microbial disruption of organic matter which results with compost as a final product. To guarantee the quality of the compost, key process factors (like the moisture content, temperature, pH, and carbon-to-nitrogen ratio) must be maintained. In order to optimize the process, nine composting trials using grape skins were conducted in the present study under various initial moisture content and air flow rate conditions over the course of 30 days. The processes were monitored through physicochemical variables and microbiological activity. Also, the kinetics of the organic matter degradation and microbial growth were investigated. Although the thermophile phase was only achieved in experiments 3 and 8, the important variables proved the efficiency of all nine composting processes. The organic carbon content and C/N ratio decreased after the 30 days of composting processes and a great color change was noticed too. The values for the germination index for all experiments were above 80%, which means that the final products are non-toxic for plants. Also, the greatest change in organic carbon content in was evident in experiment 3; it decreased from 71.57 to 57.31%. And consequently, the rate of degradation for that experiment was the highest, at 0.0093 1/day. Furthermore, the response surface methodology was used to identify optimal operating conditions for grape skin composting and the obtained conditions were 58.15% for the initial moisture content and 1.0625 L/min for the air flow rate.

2.
Bioengineering (Basel) ; 11(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534559

RESUMO

The reusability of by-products in the food industry is consistent with sustainable and greener production; therefore, the aim of this paper was to evaluate the applicability of multiple linear regression (MLR), piecewise linear regression (PLR) and artificial neural network models (ANN) to the prediction of grape-skin compost's physicochemical properties (moisture, dry matter, organic matter, ash content, carbon content, nitrogen content, C/N ratio, total colour change of compost samples, pH, conductivity, total dissolved solids and total colour change of compost extract samples) during in-vessel composting based on the initial composting conditions (air-flow rate, moisture content and day of sampling). Based on the coefficient of determination for prediction, the adjusted coefficient of determination for calibration, the root-mean-square error of prediction (RMSEP), the standard error of prediction (SEP), the ratio of prediction to deviation (RPD) and the ratio of the error range (RER), it can be concluded that all developed MLR and PLR models are acceptable for process screening. Furthermore, the ANN model developed for predicting moisture and dry-matter content can be used for quality control (RER >11). The obtained results show the great potential of multivariate modelling for analysis of the physicochemical properties of compost during composting, confirming the high applicability of modelling in greener production processes.

3.
Gels ; 10(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534619

RESUMO

The aim of this work was to analyze and compare the adsorption and desorption processes of carbohydrates (glucose as a model molecule), polyphenols (gallic acid as a model molecule), and proteins (bovine serum albumin, BSA as a model molecule) on alginate microcapsules. The adsorption and desorption processes were described by mathematical models (pseudo-first-order, pseudo-second-order, and Weber-Morris intraparticle diffusion model for adsorption, and first-order, Korsmeyer-Peppas, and the Higuchi model for desorption) in order to determine the dominant mechanisms responsible for both processes. By comparing the values of adsorption rate (k2) and initial adsorption rate (h0) based on the pseudo-first-order model, the lowest values were recorded for BSA (k1 = 0.124 ± 0.030 min-1), followed by glucose (k1 = 0.203 ± 0.041 min-1), while the model-obtained values for gallic acid were not considered significant at p < 0.05. For glucose and gallic acid, the limiting step of the adsorption process is the chemical sorption of substances, and the rate of adsorption does not depend on the adsorbate concentration, but depends on the capacity of the hydrogel adsorbent. Based on the desorption rates determined by the Korsmeyer-Peppas model (k), the highest values were recorded for gallic acid (k = 3.66236 ± 0.20776 g beads/mg gallic acid per min), followed by glucose (k = 2.55760 ± 0.16960 g beads/mg glucose per min) and BSA (k = 0.78881 ± 0.11872 g beads/mg BSA per min). The desorption process from alginate hydrogel microcapsules is characterized by the pseudo Fickian diffusion mechanism.

4.
Gels ; 9(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38131907

RESUMO

Plant-based meat analogues are food products made from vegetarian or vegan ingredients that are intended to mimic taste, texture and appearance of meat. They are becoming increasingly popular as people look for more sustainable and healthy protein sources. Furthermore, plant-based foods are marketed as foods with a low carbon footprint and represent a contribution of the consumers and the food industry to a cleaner and a climate-change-free Earth. Production processes of plant-based meat analogues often include technologies such as 3D printing, extrusion or shear cell where the ingredients have to be carefully picked because of their influence on structural and textural properties of the final product, and, in consequence, consumer perception and acceptance of the plant-based product. This review paper gives an extensive overview of meat analogue components, which affect the texture and the structure of the final product, discusses the complex interaction of those ingredients and reflects on numerous studies that have been performed in that area, but also emphasizes the need for future research and optimization of the mixture used in plant-based meat analogue production, as well as for optimization of the production process.

5.
Plants (Basel) ; 12(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631116

RESUMO

Plant-based food produces significantly less greenhouse gases, and due to its wealth of bioactive components and/or plant-based protein, it becomes an alternative in a sustainable food system. However, the processing and production of products from plant sources creates byproducts, which can be waste or a source of useful substances that can be reused. The waste produced during the production and processing of food is essentially nutrient- and energy-rich, and it is recognized as an excellent source of secondary raw materials that could be repurposed in the process of manufacturing and preparing food, or as feed for livestock. This review offers an overview of the sources and techniques of the sustainable isolation of bioactive substances and proteins from various sources that might represent waste in the preparation or production of food of plant origin. The aim is to uncover novel approaches to use waste and byproducts from the process of making food to provide this waste food an additional benefit, not forgetting the expectations of the end user, the consumer. For the successful isolation of bioactive ingredients and proteins from food of plant origin, it is crucial to develop more eco-friendly and efficient extraction techniques with a low CO2 footprint while considering the economic aspects.

6.
Plants (Basel) ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36559596

RESUMO

Mediterranean forest ecosystems in Croatia are of very high significance because of the ecological functions they provide. This region is highly sensitive to abiotic stresses such as air pollution, high sunlight, and high temperatures alongside dry periods; therefore, it is important to monitor the state of these forest ecosystems and how they respond to these stresses. This study was conducted on trees in situ and focused on the four most important forest species in the Mediterranean region in Croatia: pubescent oak (Quercus pubescens Willd.), holm oak (Quercus ilex L.), Aleppo pine (Pinus halepensis Mill.) and black pine (Pinus nigra J. F. Arnold.). Trees were selected and divided into two groups: trees with defoliation of >25% (defoliated) and trees with defoliation of ≤25% (undefoliated). Leaves and needles were collected from selected trees. Differences in chlorophyll content, hydrogen peroxide content, lipid peroxidation and enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase, non-specific peroxidase), and nutrient content between the defoliated and undefoliated trees of the examined species were determined. The results showed that there were significant differences for all species between the defoliated and undefoliated trees for at least one of the examined parameters. A principal component analysis showed that the enzyme ascorbate peroxidase can be an indicator of oxidative stress caused by ozone. By using oxidative stress indicators, it is possible to determine whether the trees are under stress even before visual damage occurs.

7.
Bioengineering (Basel) ; 9(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36354575

RESUMO

The most important and commonly used process for biodiesel synthesis is transesterification. The main by-product of biodiesel synthesis by transesterification is glycerol, which must be removed from the final product. Recently, deep eutectic solvent (DES) assisted extraction has been shown to be an effective and sustainable method for biodiesel purification. In this study, biodiesel was produced by lipase-catalysed transesterification from sunflower oil and methanol. A total of 12 different eutectic solvents were prepared and their physical properties were determined. Mathematical models were used to define which physical and chemical properties of DES and to what extent affect the efficiency of extraction of glycerol from the biodiesel. After initial screening, cholinium-based DES with ethylene glycol as hydrogen bond donor was selected and used for optimization of extraction process conditions performed in a microsystem. To determine the optimal process conditions (temperature, biodiesel:DES volume ratio, residence time), the experimental three-level-three-factor Box-Behnken experimental design was used. In the end, a combination of a mathematical model and experimental results was used to estimate how many micro-extractors are necessary for the complete removal of glycerol.

8.
Micromachines (Basel) ; 13(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363897

RESUMO

There is increased interest in the food industry for emulsions as delivery systems to preserve the stability of sensitive biocompounds with the aim of improving their bioavailability, solubility, and stability; maintaining their texture; and controlling their release. Emulsification in continuously operated microscale devices enables the production of emulsions of controllable droplet sizes and reduces the amount of emulsifier and time consumption, while NIR, as a nondestructive, noninvasive, fast, and efficient technique, represents an interesting aspect for emulsion investigation. The aim of this work was to predict the average Feret droplet diameter of oil-in-water and oil-in-aqueous mint extract emulsions prepared in a continuously operated microfluidic device with different emulsifiers (PEG 1500, PEG 6000, and PEG 20,000) based on the combination of near-infrared (NIR) spectra with chemometrics (principal component analysis (PCA) and partial least-squares (PLS) regression) and artificial neural network (ANN) modeling. PCA score plots for average preprocessed NIR spectra show the specific grouping of the samples into three groups according to the emulsifier used, while the PCA analysis of the emulsion samples with different emulsifiers showed the specific grouping of the samples based on the amount of emulsifier used. The developed PLS models had higher R2 values for oil-in-water emulsions, ranging from 0.6863 to 0.9692 for calibration, 0.5617 to 0.8740 for validation, and 0.4618 to 0.8692 for prediction, than oil-in-aqueous mint extract emulsions, with R2 values that were in range of 0.8109-0.8934 for calibration, 0.5017-0.6620, for validation and 0.5587-0.7234 for prediction. Better results were obtained for the developed nonlinear ANN models, which showed R2 values in the range of 0.9428-0.9917 for training, 0.8515-0.9294 for testing, and 0.7377-0.8533 for the validation of oil-in-water emulsions, while for oil-in-aqueous mint extract emulsions R2 values were higher, in the range of 0.9516-0.9996 for training, 0.9311-0.9994 for testing, and 0.8113-0.9995 for validation.

9.
Molecules ; 27(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889358

RESUMO

The aim of this work was to develop a simple and easy-to-apply model to predict the pH values of deep eutectic solvents (DESs) over a wide range of pH values that can be used in daily work. For this purpose, the pH values of 38 different DESs were measured (ranging from 0.36 to 9.31) and mathematically interpreted. To develop mathematical models, DESs were first numerically described using σ profiles generated with the COSMOtherm software. After the DESs' description, the following models were used: (i) multiple linear regression (MLR), (ii) piecewise linear regression (PLR), and (iii) artificial neural networks (ANNs) to link the experimental values with the descriptors. Both PLR and ANN were found to be applicable to predict the pH values of DESs with a very high goodness of fit (R2independent validation > 0.8600). Due to the good mathematical correlation of the experimental and predicted values, the σ profile generated with COSMOtherm could be used as a DES molecular descriptor for the prediction of their pH values.


Assuntos
Solventes Eutéticos Profundos , Redes Neurais de Computação , Concentração de Íons de Hidrogênio , Modelos Teóricos , Solventes/química
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120860, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35033806

RESUMO

In this study, the potential of microfluidic systems with different microchannel geometries (microchannel with teardrop micromixers and microchannel with swirl micromixers) for the preparation of oil-in-water (O/W) emulsions using two different emulsifiers (2 % and 4 % Tween 20 and 2% and 4 % PEG 2000) at total flow rates of 20-280 µL/min was investigated. The results showed that droplets with a smaller average Feret diameter were obtained when a microfluidic device with tear drop micromixers was used. To predict the average Feret diameter of O/W emulsion droplets, near-infrared (NIR) spectra of all prepared emulsions were collected and coupled with partial least squares (PLS) regression and artificial neural network modelling (ANN). The results showed that PLS models based on NIR spectra can ensure acceptable qualitative prediction, while highly non-linear ANN models are more suitable for predicting the average Feret diameter of O/W droplets. High R2 values (R2validation greater than 0.8) confirm that ANNs can be used to monitor the emulsification process.


Assuntos
Dispositivos Lab-On-A-Chip , Redes Neurais de Computação , Emulsões , Análise dos Mínimos Quadrados , Água
11.
Waste Manag Res ; 40(6): 745-753, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34269139

RESUMO

In this paper, two different types of biowaste composting processes were carried out - composting without and with bioaugmentation. All experiments were performed in an adiabatic reactor for 14 days. Composting enhanced with bioaugmentation was the better choice because the thermophilic phase was achieved earlier, making the composting time shorter. Additionally, a higher conversion of substrate (amount of substrate consumed) was also noticed in the process enhanced by bioaugmentation. A mathematical model was developed and process parameters were estimated in order to optimize the composting process. Based on good agreement between experimental data and the mathematical model simulation results, a three-level-four-factor Box-Behnken experimental design was employed to define the optimal process conditions for further studies. It was found that the air flow rate and the mass fraction of the substrate have the most significant effect on the composting process. An improvement of the composting process was achieved after altering the mentioned variables, resulting in shorter composting time and higher conversion of the substrate.


Assuntos
Compostagem , Simulação por Computador , Modelos Teóricos , Solo
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120074, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34147736

RESUMO

Artificial neural networks (ANN) were developed for prediction of total dissolved solids, polyphenol content and antioxidant capacity of root vegetables (celery, fennel, carrot, yellow carrot, purple carrot and parsley) extracts prepared from the (i) fresh vegetables, (ii) vegetables dried conventionally at 50 °C and 70 °C, and (iii) the lyophilised vegetables. Two types of solvents were used: organic solvents (acetone mixtures and methanol mixtures) and water. Near-infrared (NIR) spectra were recorded for all samples. Principal Component Analysis (PCA) of the pre-treated spectra using Savitzky-Golay smoothing showed specific grouping of samples in two clusters (1st: extracts prepared using methanol mixtures and water as the solvents; 2nd: extracts prepared using acetone mixtures as the solvents) for all four types of extracts. Furthermore, obtained results showed that the developed ANN models can reliably be used for prediction of total dissolved solids, polyphenol content and antioxidant capacity of dried root vegetable extracts in relation to the recorded NIR spectra.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Verduras , Extratos Vegetais , Polifenóis , Análise de Componente Principal
13.
Gels ; 8(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35049548

RESUMO

The use of alginate microcapsules has often been mentioned as one of the ways to remove dyes from waste solvents, water and materials from the food industry. In addition, alginate can be used as a wall material for the microencapsulation of food dyes and their further application in the food industry. The aims of this study were to: (i) determine the effect of the alginate concentration (1, 2, 3 and 4%) on the ability of the adsorption and desorption of natural beetroot red dye and (ii) evaluate the kinetic parameters of the adsorption and desorption process, as well as the factors affecting and limiting those processes. According to the obtained results, the viscosity of alginate solutions increased with an increase in the alginate concentration. Based on k2 values (the pseudo-second order kinetic rate constant), when a more concentrated solution of alginate was used in the adsorption process, the beads adsorbed a smaller amount of dye. Furthermore, based on the values for n derived from the Korsmeyer-Peppas model, the dye release rates (k) were higher for beads made with lower alginate concentrations, and this release was governed by a pseudo-Fickian diffusion mechanism (n values ranged from 0.2709 to 0.3053).

14.
Phytochem Anal ; 32(3): 326-338, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32794284

RESUMO

OBJECTIVES: The aim of this study was to develop artificial neural network (ANNs) models for prediction of physical (total dissolved solids, extraction yield) and chemical (total polyphenolic content, antioxidant activity) properties of industrial hemp extracts, prepared by two different extraction methods (solid-liquid extraction and microwave-assisted extraction) based on combined UV-VIS-NIR spectra. Spectral data were gathered for 46 samples per extraction method. RESULTS: The PCA analysis ensured efficient separation of the samples based on the amount of ethanol in extraction solvent using NIR spectra for both conventional and microwave-assisted extraction. CONCLUSIONS: Results showed that reliable ANN models (R2 >0.7000) for describing physical, chemical, and simultaneously physical and chemical characteristics can be developed based on combined UV-VIS-NIR spectra of industrial hemp extracts without spectra pre-processing.


Assuntos
Cannabis , Antioxidantes , Micro-Ondas , Redes Neurais de Computação , Extratos Vegetais
15.
J Food Biochem ; 44(8): e13233, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32490545

RESUMO

The stability of lavender, lemon balm, mint, sage, and thyme teas was investigated using in-vitro simulation of the digestive system. Kinetics of changes in the total polyphenolic content (TPC) and the antioxidant activity during the in-vitro trials were also evaluated. Results showed that TPC of mint teas decreases the fastest. Mathematical models for prediction of the TPC and the antioxidant activity of prepared teas based on UV-VIS and NIR spectra collected before, during, and after simulation showed that the best prediction was obtained for the wavelength ranges from 410 to 900 nm, 904 to 928 nm, and 1,399 to 1699 nm. It was concluded that the NIR can be used for calibration, validation, and classification of teas prepared from Lamiaceae plants. PRACTICAL APPLICATIONS: The bioactives' in-vitro digestion process can successfully be characterized by chemical, spectroscopic, and mathematical analysis. Application of NIR spectroscopy, in combination with multivariate analysis, leads to a reduction of time, costs, and chemical consumption and gives reliable results that pharmaceutical, food, and chemical industries can benefit from.


Assuntos
Lamiaceae , Chás de Ervas , Antioxidantes/análise , Digestão , Cinética
16.
Ultrason Sonochem ; 68: 105194, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32492528

RESUMO

This research aimed to analyze the effects of ultrasound on the quality characteristics of white wine when processed by two different systems, i.e., ultrasonic bath and ultrasonic probe. In this regard, the multivariate statistical analysis and artificial neural network (ANN) techniques were used. Additionally, the efficiency of high power ultrasound (HPU) combined with sulfite and glutathione (GSH) treatments was explored during 18 months of bottle storage. Regarding ultrasonic bath experiment, the higher bath temperature caused the degradation of volatile compounds, precisely esters and higher alcohols, while the ultrasound effect on phenolic composition was much less pronounced. Interestingly, a combination of larger probe diameter and higher ultrasound amplitude showed a milder effect on phenolic and volatile composition in ultrasonic probe experiment. Both, ultrasonic bath and probe experiments did not cause great changes in the color properties. Moreover, implemented ANN models for flavan-3-ols, higher alcohols and esters resulted in the highest prediction values. HPU processing after 18 months of storage did not affect wine color. However, it modified phenolic and volatile composition, with greater effect in wines with lower concentration of antioxidants. In addition, there was no significant difference in the phenolic and volatile composition among sonicated low-sulfite-GSH wine and the one with standard-sulfite content. Therefore, a combined HPU and low-sulfite-GSH treatment might be a promising method for production of low-sulfite wines.


Assuntos
Manipulação de Alimentos/métodos , Qualidade dos Alimentos , Ondas Ultrassônicas , Vinho/análise , Redes Neurais de Computação , Fatores de Tempo
17.
Micromachines (Basel) ; 10(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717462

RESUMO

Development of green, clean, and sustainable processes presents new challenges in today's science. Production of fuel is no exception. Considering the utilisation of various renewable sources, the synthesis of biodiesel, characterised as more environmentally-friendly then fossil fuel, has drawn significant attention. Even though the process based on chemical transesterification in a batch reactor still presents the most used method for its production, enzyme catalysed synthesis of biodiesel in a microreactor could be a new approach for going green. In this research, edible sunflower oil and methanol were used as substrates and lipase from Thermomyces lanuginosus (Lipolase L100) was used as catalyst for biodiesel synthesis. Experiments were performed in a polytetrafluoroethylene (PTFE) microreactor with three inlets and in glass microreactors with two and three inlets. For a residence time of 32 min, the fatty acids methyl esters (FAME) yield was 30% higher than the yield obtained for the glass microreactor with three inlets. In comparison, when the reaction was performed in a batch reactor (V = 500 mL), the same FAME yield was achieved after 1.5 h. In order to enhance the productivity of the process, we used proposed reaction kinetics, estimated kinetic parameters, and a mathematical model we developed. After validation using independent experimental data, a proposed model was used for process optimization in order to obtain the highest FAME yield for the shortest residence time.

18.
Food Technol Biotechnol ; 57(2): 159-170, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31537965

RESUMO

The foam mat drying process is a simple and economical alternative to spray and freeze drying. It is considerably cheaper due to rapid drying at low temperatures, preservation of nutritional quality and easy reconstitution. Basic principle of the process is conversion of a liquid or a semi-liquid foodstuff to foam and thin layer drying of the foam. This study explores the possibility of the foam mat drying for production of instant cocoa powder enriched with lavender (Lavandula × hybrida L.) extracts. The aqueous extraction of lavender was optimized using Taguchi orthogonal array design. Extracts obtained under optimal conditions were added to a mixture of egg white, cocoa powder, sugar and gelatine. Mixtures were blended for 4 min to obtain stable foam which was dried at three different temperatures (t=50, 60 and 70 °C) and milled into a powdered product. Drying rates were obtained from the experimental data using nonlinear model estimation. Flow properties, bulk density, particle size distribution, reconstitution and sensory properties of the final product were also assessed. Based on the obtained data, the drying process was best described by Page's drying model. Samples dried at lower temperature (t=50 °C) exhibited the best powder flow and reconstitution properties. Sensory analysis resulted in similar findings: powder samples dried at lower temperatures had better appearance, colour and taste. The obtained data confirm the suitability of the foam mat drying for the production of instant cocoa powder enriched with lavender extract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...