Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686989

RESUMO

In this study, we present a new approach for the synthesis of Pt/SnO2 catalysts using microwave radiation. Pt(IV) and Sn(IV) inorganic precursors (H2PtCl6 and SnCl4) and ammonia were used, which allowed the controlled formation of platinum particles on the anisotropic SnO2 support. The synthesized Pt/SnO2 samples are mesoporous and exhibit a reversible physisorption isotherm of type IV. The XRD patterns confirmed the presence of platinum maxima in all Pt/SnO2 samples. The Williamson-Hall diagram showed SnO2 anisotropy with crystallite sizes of ~10 nm along the c-axis (< 00l >) and ~5 nm along the a-axis (< h00 >). SEM analysis revealed anisotropic, urchin-like SnO2 particles. XPS results indicated relatively low average oxidation states of platinum, close to Pt metal. 119Sn Mössbauer spectroscopy indicated electronic interactions between Pt and SnO2 particles. The synthesized samples were used for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of excess NaBH4. The catalytic activity of the Pt/SnO2 samples for the reduction of 4-NP to 4-AP was optimized by varying the synthesis parameters and Pt loading. The optimal platinum loading for the reduction of 4-NP to 4-AP on the anisotropic SnO2 support is 5 mol% with an apparent rate constant k = 0.59 × 10-2 s-1. The Pt/SnO2 sample showed exceptional reusability and retained an efficiency of 81.4% after ten cycles.

2.
Polymers (Basel) ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35566920

RESUMO

Antitumor applications of ascorbic acid (AA) and its oxidized form dehydroascorbic acid (DHA) can be quite challenging due to their instability and sensitivity to degradation in aqueous media. To overcome this obstacle, we have synthesized solid lipid nanoparticles loaded with ascorbyl palmitate (SLN-AP) with variations in proportions of the polymer Pluronic F-68. SLNs were synthesized using the hot homogenization method, characterized by measuring the particle size, polydispersity, zeta potential and visualized by TEM. To investigate the cellular uptake of the SLN, we have incorporated coumarin-6 into the same SLN formulation and followed their successful uptake for 48 h. We have tested the cytotoxicity of the SLN formulations and free ascorbate forms, AA and DHA, on HEK 293 and U2OS cell lines by MTT assay. The SLN-AP in both formulations have a cytotoxic effect at lower concentrations when compared to ascorbate applied the form of AA or DHA. Better selectivity for targeting tumor cell line was observed with 3% Pluronic F-68. The antioxidative effect of the SLN-AP was observed as early as 1 h after the treatment with a small dose of ascorbate applied (5 µM). SLN-AP formulation with 3% Pluronic F-68 needs to be further optimized as an ascorbate carrier due to its intrinsic cytotoxicity.

3.
Nanomaterials (Basel) ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947698

RESUMO

The dispersion of platinum (Pt) on metal oxide supports is important for catalytic and gas sensing applications. In this work, we used mechanochemical dispersion and compatible Fe(II) acetate, Sn(II) acetate and Pt(II) acetylacetonate powders to better disperse Pt in Fe2O3 and SnO2. The dispersion of platinum in SnO2 is significantly different from the dispersion of Pt over Fe2O3. Electron microscopy has shown that the elements Sn, O and Pt are homogeneously dispersed in α-SnO2 (cassiterite), indicating the formation of a (Pt,Sn)O2 solid solution. In contrast, platinum is dispersed in α-Fe2O3 (hematite) mainly in the form of isolated Pt nanoparticles despite the oxidative conditions during annealing. The size of the dispersed Pt nanoparticles over α-Fe2O3 can be controlled by changing the experimental conditions and is set to 2.2, 1.2 and 0.8 nm. The rather different Pt dispersion in α-SnO2 and α-Fe2O3 is due to the fact that Pt4+ can be stabilized in the α-SnO2 structure by replacing Sn4+ with Pt4+ in the crystal lattice, while the substitution of Fe3+ with Pt4+ is unfavorable and Pt4+ is mainly expelled from the lattice at the surface of α-Fe2O3 to form isolated platinum nanoparticles.

4.
Nanomaterials (Basel) ; 10(9)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932706

RESUMO

Magnetic polymer gels are a new promising class of nanocomposite gels. In this work, magnetic PEO/iron oxide nanocomposite hydrogels were synthesized using the one-step -irradiation method starting from poly(ethylene oxide) (PEO) and iron(III) precursor alkaline aqueous suspensions followed by simultaneous crosslinking of PEO chains and reduction of Fe(III) precursor. -irradiation dose and concentrations of Fe3+, 2-propanol and PEO in the initial suspensions were varied and optimized. With 2-propanol and at high doses magnetic gels with embedded magnetite nanoparticles were obtained, as confirmed by XRD, SEM and Mössbauer spectrometry. The quantitative determination of -irradiation generated Fe2+ was performed using the 1,10-phenanthroline method. The maximal Fe2+ molar fraction of 0.55 was achieved at 300 kGy, pH = 12 and initial 5% of Fe3+. The DSC and rheological measurements confirmed the formation of a well-structured network. The thermal and rheological properties of gels depended on the dose, PEO concentration and initial Fe3+ content (amount of nanoparticles synthesized inside gels). More amorphous and stronger gels were formed at higher dose and higher nanoparticle content. The properties of synthesized gels were determined by the presence of magnetic iron oxide nanoparticles, which acted as reinforcing agents and additional crosslinkers of PEO chains thus facilitating the one-step gel formation.

5.
Materials (Basel) ; 12(6)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893951

RESUMO

The main goal of this study was the formation of bone tissue using dexamethasone (DEX)-loaded [COCH3]-RADARADARADARADA-[CONH2] (RADA 16-I) scaffold that has the ability to release optimal DEX concentration under perfusion force. Bone-marrow samples were collected from three patients during a hip arthroplasty. Human mesenchymal stem cells (hMSCs) were isolated and propagated in vitro in order to be seeded on scaffolds made of DEX-loaded RADA 16-I hydrogel in a perfusion bioreactor. DEX concentrations were as follows: 4 × 10-3, 4 × 10-4 and 4 × 10-5 M. After 21 days in a perfusion bioreactor, tissue was analyzed by scanning electron microscopy (SEM) and histology. Markers of osteogenic differentiation were quantified by real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. Minerals were quantified and detected by the von Kossa method. In addition, DEX release from the scaffold in a perfusion bioreactor was assessed. The osteoblast differentiation was confirmed by the expression analysis of osteoblast-related genes (alkaline phosphatase (ALP), collagen I (COL1A1) and osteocalcin (OC). The hematoxylin/eosin staining confirmed the presence of cells and connective tissue, while SEM revealed morphological characteristics of cells, extracellular matrix and minerals-three main components of mature bone tissue. Immunocytochemical detection of collagen I is in concordance with given results, supporting the conclusion that scaffold with DEX concentration of 4 × 10-4 M has the optimal engineered tissue morphology. The best-engineered bone tissue is produced on scaffold loaded with 4 × 10-4 M DEX with a perfusion rate of 0.1 mL/min for 21 days. Differentiation of hMSCs on DEX-loaded RADA 16-I scaffold under perfusion force has a high potential for application in regenerative orthopedics.

6.
Mater Sci Eng C Mater Biol Appl ; 91: 486-495, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033280

RESUMO

Gold nanoparticles (AuNPs) were synthesized in the presence of citrate (Au-CIT), glutathione (Au-GSH) and aminodextran (Au-DEX) in order to modify AuNPs surfaces and to increase their cellular uptake in the breast cancer cells MDA-MB-231. AuNPs were characterized with respect to their particle size, shape and colloidal stability in an aqueous solution and cell media. The mass accumulation of each AuNP type inside cancer cells was determined quantitatively, using Inductive Coupled Plasma - mass spectroscopy. The sub-cellular accumulation was studied using Transmission Electron Microscopy (TEM). It was found that gold nanoparticles applied to cancer cells were localized in cytoplasmic vesicles and that the highest uptake was shown in the presence of Au-GSH nanoparticles. The effect of AuNPs on the cell cycle was investigated using flow cytometry and Western blot analysis. The gold nanoparticles alone did not affect the cell cycle, as shown by flow cytometry. Furthermore, the cancer cells were irradiated using conventional clinically relevant high-energy X-ray radiation of 6 MV in the dose of 4 Gy. The results on cells only irradiated showed an S phase arrest six and 8 h after irradiation, and a G2/M arrest 24 and 48 h after irradiation. The irradiation of breast cancer cells treated with AuNPs has shown no significant variation in cell cycle distribution as opposed to X-ray radiation alone.


Assuntos
Neoplasias da Mama/patologia , Ciclo Celular , Ouro/química , Nanopartículas Metálicas/química , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Endocitose/efeitos dos fármacos , Feminino , Humanos , Hidrodinâmica , Nanopartículas Metálicas/ultraestrutura , Espectrofotometria Ultravioleta , Frações Subcelulares/metabolismo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...