Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 11(9): 1320-7, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19224032

RESUMO

The OH concentration in the Cl-initiated oxidation of cyclohexane has been measured between 6.5-20.3 bar and in the 586-828 K temperature range by a pulsed-laser photolytic initiation-laser-induced fluorescence method. The experimental OH profiles are modeled by using a master-equation-based kinetic model as well as a comprehensive literature mechanism. Below approximately 700 K OH formation takes place on two distinct time-scales, one on the order of microseconds and the other over milliseconds. Detailed modeling demonstrates that "formally direct" chemical activation pathways are responsible for the OH formation on short timescales. These results establish that formally direct pathways are surprisingly important even for relatively large molecules at the pressures of practical combustors. It is also shown that remaining discrepancies between model and experiment are attributable to low-temperature chain branching from the addition of the "second oxygen" to hydroperoxycyclohexyl radicals.

2.
J Phys Chem A ; 113(7): 1278-86, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19146471

RESUMO

The rate coefficient for the self-reaction of vinyl radicals has been measured by two independent methods. The rate constant as a function of temperature at 20 Torr has been determined by a laser-photolysis/laser absorption technique. Vinyl iodide is photolyzed at 266 nm, and both the vinyl radical and the iodine atom photolysis products are monitored by laser absorption. The vinyl radical concentration is derived from the initial iodine atom concentration, which is determined by using the known absorption cross section of the iodine atomic transition to relate the observed absorption to concentration. The measured rate constant for the self-reaction at room temperature is approximately a factor of 2 lower than literature recommendations. The reaction displays a slightly negative temperature dependence, which can be represented by a negative activation energy, (E(a)/R) = -400 K. The laser absorption results are supported by independent experiments at 298 K and 4 Torr using time-resolved synchrotron-photoionization mass-spectrometric detection of the products of divinyl ketone and methyl vinyl ketone photolysis. The photoionization mass spectrometry experiments additionally show that methyl + propargyl are formed in the vinyl radical self-reaction, with an estimated branching fraction of 0.5 at 298 K and 4 Torr.

3.
Phys Chem Chem Phys ; 10(5): 713-28, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-19791455

RESUMO

The photodissociation of vinyl iodide has been investigated at several wavelengths between 193 and 266 nm using three techniques: time-resolved Fourier transform emission spectroscopy, multiple pass laser absorption spectroscopy, and velocity-mapped ion imaging. The only dissociation channel observed is C-I bond cleavage to produce C2H3 (nu, N) + I (2P(J)) at all wavelengths investigated. Unlike photodissociation of other vinyl halides (C2H3X, X = F, Cl, Br), in which the HX product channel is significant, no HI elimination is observed. The angular and translational energy distributions of I atoms indicate that atomic products arise solely from dissociation on excited states with negligible contribution from internal conversion to the ground state. We derive an upper limit on the C-I bond strength of D0(C2H3-I) < or = 65 kcal mol(-1). The ground-state potential-energy surface of vinyl iodide is explored by ab initio calculations. We present a model in which the highest occupied molecular orbital in vinyl halides has increasing X(np) non-bonding character with increasing halogen mass. This change leads to reduced torsional force around the C-C bond in the excited state. Because the ground-state energy is highest when the CH2 plane is perpendicular to the CHX plane, a reduced torsional force in the excited state correlates with a lower rate for internal conversion compared to excited-state C-X bond fission. This model explains the gradual change in photodissociation mechanisms of vinyl halides from the dominance of internal conversion in vinyl fluoride to the dominance of excited-state dissociation in vinyl iodide.

4.
Phys Chem Chem Phys ; 9(31): 4315-31, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17687479

RESUMO

The production of OH and HO(2) in Cl-initiated oxidation of cyclohexane has been measured using pulsed-laser photolytic initiation and continuous-laser absorption detection. The experimental data are modeled by master equation calculations that employ new G2(MP2)-like ab initio characterizations of important stationary points on the cyclo-C(6)H(11)O(2) surface. These ab initio calculations are a substantial expansion on previously published characterizations, including explicit consideration of conformational changes (chair-boat, axial-equatorial) and torsional potentials. The rate constants for the decomposition and ring-opening of cyclohexyl radical are also computed with ab initio based transition state theory calculations. Comparison of kinetic simulations based on the master equation results with the present experimental data and with literature determinations of branching fractions suggests adjustment of several transition state energies below their ab initio values. Simulations with the adjusted values agree well with the body of experimental data. The results once again emphasize the importance of both direct and indirect components of the kinetics for the production of both HO(2) and OH in radical + O(2) reactions.


Assuntos
Radicais Livres , Oxigênio/química , Química/métodos , Cloro/química , Cicloexanos/química , Radical Hidroxila , Compostos Inorgânicos , Cinética , Modelos Químicos , Modelos Teóricos , Conformação Molecular , Temperatura , Fatores de Tempo
5.
J Phys Chem A ; 111(29): 6843-51, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17569512

RESUMO

This work reports measurements of absolute rate coefficients and Rice-Ramsperger-Kassel-Marcus (RRKM) master equation simulations of the C2H3+C2H4 reaction. Direct kinetic studies were performed over a temperature range of 300-700 K and pressures of 20 and 133 mbar. Vinyl radicals (H2C=CH) were generated by laser photolysis of vinyl iodide (C2H3I) at 266 nm, and time-resolved absorption spectroscopy was used to probe vinyl radicals through absorption at 423.2 nm. Measurements at 20 mbar are in good agreement with previous determinations at higher temperature. A weighted three-parameter Arrhenius fit to the experimental rate constant at 133 mbar, with the temperature exponent fixed, gives k=(7+/-1)x10(-14) cm3 molecule(-1) s(-1) (T/298 K)2 exp[-(1430+/-70) K/T]. RRKM master equation simulations, based on G3 calculations of stationary points on the C4H7 potential energy surface, were carried out to predict rate coefficients and product branching fractions. The predicted branching to 1-methylallyl product is relatively small under the conditions of the present experiments but increases as the pressure is lowered. Analysis of end products of 248 nm photolysis of vinyl iodide/ethylene mixtures at total pressures between 27 and 933 mbar provides no direct evidence for participation of 1-methylallyl.

6.
J Phys Chem A ; 111(19): 3891-900, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17439192

RESUMO

Production of OH in the reaction of the neopentyl radical with O2 has been measured by a laser photolysis/cw absorption method for various pressures and oxygen concentrations at 673, 700, and 725 K. The MIT Reaction Mechanism Generator (RMG) was used to automatically generate a model for this system, and the predicted OH concentration profiles are compared to present and literature experimental results. Several reactions significantly affect the OH profile. The experimental data provide useful constraints on the rate coefficient for the formally direct chemical activation reaction of neopentyl radical with O2 to form OH (CH3)3CCH2 + O2 --> OH + 3,3-dimethyloxetane (Rxn 1) At 673 K and 60 Torr, log k(1) (cm(3) molecule(-1) s(-1)) = -13.7 +/- 0.5. Absolute absorbance measurements on OH and I indicate that the branching ratio for R + O2 to OH is about 0.03 under these conditions. The data suggest that the ab initio neopentyl + O2 potential energy surface of Sun and Bozzelli is accurate to within 2 kcal mol(-1).

7.
J Chem Phys ; 125(22): 224308, 2006 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17176142

RESUMO

The reaction of trichlorosilane (HSiCl(3)) with atomic chlorine (Cl) has been investigated by using infrared kinetic spectroscopy of the HCl product. The overall second order rate constant for the reaction has been determined as a function of temperature by using pseudo-first-order kinetic methods. Formation of HCl (nu=0) was monitored on the (nu=1<--0) R(2) line at 2944.914 cm(-1) and that of HCl (nu=1) on the (nu=2<--1) R(2) line at 2839.148 cm(-1). The overall second order rate constant was determined to be (2.8+/-0.1)x10(-11) cm(3) molecule(-1) s(-1) at 296 K. The rate constant shows no pressure dependence and decreases slightly with increased temperature [k=(2.3+/-0.2)x10(-11)e((66+/-3)/T) cm(3) molecule(-1) s(-1)]. Substantial vibrational excitation is measured in the HCl product, with the fraction of HCl (nu=1)/HCl (total)=0.41+/-0.08. These observations are consistent with the reaction being a barrierless hydrogen abstraction reaction. The experimental results are supported by ab initio quantum chemical calculations that show the transition state for abstraction to lie below the energy of the reactants, in disagreement with previously published calculations.

8.
Phys Chem Chem Phys ; 8(19): 2240-8, 2006 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-16688306

RESUMO

The absolute gas phase ultraviolet absorption spectra of trichlorovinylsilane and allyltrichlorosilane have been measured from 191 to 220 nm. Over this region the absorption spectra of both species are broad and relatively featureless, and their cross sections increase with decreasing wavelength. The electronic transitions of trichlorovinylsilane were calculated by ab initio quantum chemical methods and the observed absorption bands assigned to the A(1)A''<-- X[combining tilde](1)A'' transition. The maximum absorption cross section in the region, at 191 nm, is sigma = (8.50 +/- 0.06) x 10(-18) cm(2) for trichlorovinylsilane and sigma = (2.10 +/- 0.02) x 10(-17) cm(2) for allyltrichlorosilane. The vinyl radical and the allyl radical are formed promptly from the 193 nm photolysis of their respective trichlorosilane precursors. By comparison of the transient visible absorption and the 1315 nm I atom absorption from 266 nm photolysis of vinyl iodide and allyl iodide, the absorption cross sections at 404 nm of vinyl radical ((2.9 +/- 0.4) x 10(-19) cm(2)) and allyl radical ((3.6 +/- 0.8) x 10(-19) cm(2)) were derived. These cross sections are in significant disagreement with literature values derived from kinetic modeling of allyl or vinyl radical self-reactions. Using these cross sections, the vinyl radical yield from trichlorovinylsilane was determined to be phi = (0.9 +/- 0.2) per 193 nm photon absorbed, and the allyl radical yield from allyltrichlorosilane phi = (0.7 +/- 0.2) per 193 nm photon absorbed.


Assuntos
Acrilonitrila/química , Compostos Alílicos/química , Fotoquímica/métodos , Silanos/química , Raios Ultravioleta , Compostos de Vinila/química , Acrilonitrila/efeitos da radiação , Compostos Alílicos/efeitos da radiação , Radicais Livres/química , Radicais Livres/efeitos da radiação , Transição de Fase/efeitos da radiação , Fotólise/efeitos da radiação , Silanos/efeitos da radiação , Compostos de Vinila/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...