Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35632274

RESUMO

The estimation of the speed of human motion from wearable IMU sensors is required in applications such as pedestrian dead reckoning. In this paper, we test deep learning methods for the prediction of the motion speed from raw readings of a low-cost IMU sensor. Each subject was observed using three sensors at the shoe, shin, and thigh. We show that existing general-purpose architectures outperform classical feature-based approaches and propose a novel architecture tailored for this task. The proposed architecture is based on a semi-supervised variational auto-encoder structure with innovated decoder in the form of a dense layer with a sinusoidal activation function. The proposed architecture achieved the lowest average error on the test data. Analysis of sensor placement reveals that the best location for the sensor is the shoe. Significant accuracy gain was observed when all three sensors were available. All data acquired in this experiment and the code of the estimation methods are available for download.


Assuntos
Aprendizado Profundo , Pedestres , Dispositivos Eletrônicos Vestíveis , Humanos , Perna (Membro) , Movimento (Física)
2.
Sensors (Basel) ; 20(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659959

RESUMO

A new predictor-corrector filter for attitude and heading reference systems (AHRS) using data from an orthogonal sensor combination of three accelerometers, three magnetometers and three gyroscopes is proposed. The filter uses the predictor-corrector structure, with prediction based on gyroscopes and independent correction steps for acceleration and magnetic field sensors. We propose two variants of the filter: (i) one using mathematical operations of special orthogonal group SO(3), that are accurate for nonlinear operations, for highest possible accuracy, and (ii) one using linearization of nonlinear operations for fast evaluation. Both approaches are quaternion-based filter realizations without redundant steps. The filters are compared to state of the art methods in this field on data recorded using low-cost microelectromechanical systems (MEMS) sensors with ground truth measured by the VICON optical system. Both filters achieved better accuracy than conventional methods at lower computational cost. The recorded data with ground truth reference and the source codes of both filters are publicly available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...