Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 115(8): 1385-95, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21306162

RESUMO

In an approach combining high resolution X-ray diffraction at low temperatures with density functional calculations, two closo-borates, B12H12(2-) (1) and B10H10(2-) (2), and two arachno-boranes, B10H12L2 (L = amine (3) or acetonitrile (4)), are studied by means of Atoms In Molecules (AIM) theory and Electron Localizability Indicator (ELI-D). The charge transfer via the dative N-B bonds in the arachno-boranes and via dihydrogen contacts in the closo-borates is quantified. The dative N-B bond in 4 is significantly shorter and stronger than that in 3 and in small N-B Lewis acid base adducts from the literature. It is even shorter in the gas phase than in the crystal environment in contrast to the bond shortening in the crystal generally found for N-B Lewis acid-base adducts. Furthermore, the calculated charge transfer in terms of AIM charges is opposite to the expected N → B direction but still weak as found for all other N-B bonds. The intramolecular charge redistributions due to intermolecular interactions are quantified by the AIM and ELI-D analysis of contact ion pairs. The latter method gives a deeper understanding of delocalization effects in the borane cages as well as in the counterions. Since dihydrogen bonds are rarely found in crystal structures, one focus was directed to the topologies of the large number of 58 experimentally found contacts of this type. The analysis reveals that the electron density at the bond critical point, the corresponding Laplace function, and the curvature along the bond path (λ3) show a behavior that clearly discriminates these interactions from classical hydrogen bonds, confirming earlier theoretical findings.


Assuntos
Boranos/química , Elétrons , Hidrogênio/química , Nitrogênio/química , Cobalto/química , Temperatura Baixa , Gases/química , Ligação de Hidrogênio , Íons/química , Ácidos de Lewis/química , Bases de Lewis/química , Modelos Moleculares , Teoria Quântica , Eletricidade Estática , Difração de Raios X
2.
Inorg Chem ; 50(1): 90-103, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21114266

RESUMO

In an approach combining high-resolution X-ray diffraction at low temperatures with density functional theory calculations, two closo-borates, B(12)H(12)(2-) (1) and B(10)H(10)(2-) (2), and two arachno-boranes, B(10)H(12)L(2) [L = amine (3) or acetonitrile (4)], were analyzed by means of the atoms-in-molecules (AIM) theory and electron localizability indicator (ELI-D). The two-electron three-center (2e3c) bonds of the borane cages are investigated with the focus on real-space indicators for chemical bonding and electron delocalization. In compound 2, only two of the three expected bond critical points (bcp's) are found. However, a weakly populated ELI-D basin is found for this pair of adjacent B atoms and the delocalization index and the Source contributions are on the same order of magnitude as those for the other pairs. The opposite situation is found in the arachno-boranes, where no ELI-D basins are found for two types of B-B pairs, which, in turn, exhibit a bcp. However, again the delocalization index is on the same order of magnitude for this bonding interaction. The results show that an unambiguous real-space criterion for chemical bonding is not given yet for this class of compounds. The arachno-boranes carry a special B-B bond, which is the edge of the crown-shaped molecule. This bond is very long and extremely curved inward the B-B-B ring. Nevertheless, the corresponding bond ellipticity is quite small and the ELI-D value at the attractor position of the disynaptic valence basin is remarkably larger than those for all other B-B valence basins. Furthermore, the value of the ED is large in relation to the B-B bond length, so that only this bond type does not follow a linear relationship of the ED value at the bcp versus B-B bond distances, which is found for all other B-B bcp's. The results indicate that both 2e2c and 2e3c bonding play a distinct role in borane chemistry.

3.
Chemistry ; 14(6): 1918-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18067114

RESUMO

Herein we report a new class of low-melting ionic liquids (IL) that consist of N,N,N-trialkylammonioundecahydrododecaborates(1-) as the anion and a range of cations. The cations include the common cations of conventional ILs such as tetraalkylammonium, N-alkylpyridinium, and N-methyl-N'-alkylimidazolium. In addition, their salts with lithium, potassium, and proton cations also exist as ILs. Pulse radiolysis studies indicate that the anions do not react with solvated electrons.

4.
Bioconjug Chem ; 18(4): 1287-93, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17569498

RESUMO

A new class of lipids, containing the closo-dodecaborate cluster, has been synthesized. Two lipids, S-(N, N-(2-dimyristoyloxyethyl)acetamido)thioundecahydro-closo-dodecaborate (2-) (B-6-14) and S-(N, N-(2-dipalmitoyloxyethyl)acetamido)thioundecahydro-closo-dodecaborate (2-) (B-6-16) are described. Both of them have a double-tailed lipophilic part and a headgroup carrying two negative charges. Differential scanning calorimetry shows that B-6-14 and B-6-16 bilayers have main phase transition temperatures of 18.8 and 37.9 degrees C, respectively. Above the transition temperature of 18.8 degrees C, B-6-14 can form liposomal vesicles, representing the first boron-containing lipid with this capability. Upon cooling below the transition temperature, stiff bilayers are formed. When incorporated into liposomal formulations with equimolar amounts of distearoyl phosphatidylcholine (DSPC) and cholesterol, stable liposomes are obtained. The zeta-potential measurements indicate that both B-6-14- and B-6-16-containing vesicles are negatively charged, with the most negative potential described of any liposome so far. The liposomes are of high potential value as transporters of boron to tumor cells in treatments based on boron neutron capture therapy (BNCT). Liposomes prepared from B-6-14 were slightly less toxic in V79 Chinese hamster cells (IC50 5.6 mM) than unformulated Na2B12H11SH (IC50 3.9 mM), while liposomes prepared from B-6-16 were not toxic even at 30 mM.


Assuntos
Compostos de Boro/toxicidade , Lipídeos/toxicidade , Lipossomos/toxicidade , Animais , Compostos de Boro/química , Terapia por Captura de Nêutron de Boro , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Lipídeos/síntese química , Lipossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...