Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Internet Res ; 25: e44428, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498655

RESUMO

BACKGROUND: Wearable sensor technologies have the potential to improve monitoring in people with multiple sclerosis (MS) and inform timely disease management decisions. Evidence of the utility of wearable sensor technologies in people with MS is accumulating but is generally limited to specific subgroups of patients, clinical or laboratory settings, and functional domains. OBJECTIVE: This review aims to provide a comprehensive overview of all studies that have used wearable sensors to assess, monitor, and quantify motor function in people with MS during daily activities or in a controlled laboratory setting and to shed light on the technological advances over the past decades. METHODS: We systematically reviewed studies on wearable sensors to assess the motor performance of people with MS. We scanned PubMed, Scopus, Embase, and Web of Science databases until December 31, 2022, considering search terms "multiple sclerosis" and those associated with wearable technologies and included all studies assessing motor functions. The types of results from relevant studies were systematically mapped into 9 predefined categories (association with clinical scores or other measures; test-retest reliability; group differences, 3 types; responsiveness to change or intervention; and acceptability to study participants), and the reporting quality was determined through 9 questions. We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting guidelines. RESULTS: Of the 1251 identified publications, 308 were included: 176 (57.1%) in a real-world context, 107 (34.7%) in a laboratory context, and 25 (8.1%) in a mixed context. Most publications studied physical activity (196/308, 63.6%), followed by gait (81/308, 26.3%), dexterity or tremor (38/308, 12.3%), and balance (34/308, 11%). In the laboratory setting, outcome measures included (in addition to clinical severity scores) 2- and 6-minute walking tests, timed 25-foot walking test, timed up and go, stair climbing, balance tests, and finger-to-nose test, among others. The most popular anatomical landmarks for wearable placement were the waist, wrist, and lower back. Triaxial accelerometers were most commonly used (229/308, 74.4%). A surge in the number of sensors embedded in smartphones and smartwatches has been observed. Overall, the reporting quality was good. CONCLUSIONS: Continuous monitoring with wearable sensors could optimize the management of people with MS, but some hurdles still exist to full clinical adoption of digital monitoring. Despite a possible publication bias and vast heterogeneity in the outcomes reported, our review provides an overview of the current literature on wearable sensor technologies used for people with MS and highlights shortcomings, such as the lack of harmonization, transparency in reporting methods and results, and limited data availability for the research community. These limitations need to be addressed for the growing implementation of wearable sensor technologies in clinical routine and clinical trials, which is of utmost importance for further progress in clinical research and daily management of people with MS. TRIAL REGISTRATION: PROSPERO CRD42021243249; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=243249.


Assuntos
Esclerose Múltipla , Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Esclerose , Marcha , Exercício Físico
2.
Neurology ; 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380751

RESUMO

OBJECTIVE: To explore the so-called "structure-function paradox" in individuals with focal spinal lesions by means of tract-specific MRI coupled with multi-modal evoked potentials and quantitative sensory testing. METHODS: Individuals with signs and symptoms attributable to cervical myelopathy (i.e., no evidence of competing neurological diagnosis) were recruited in the Balgrist University Hospital, Zurich, Switzerland between February 2018 and March 2019. We evaluated the relationship between the extent of structural damage within spinal nociceptive pathways (i.e., dorsal horn, spinothalamic tract, anterior commissure) assessed with atlas-based MRI , and 1) the functional integrity of spinal nociceptive pathways measured with contact heat-, cold-, and pinprick- evoked potentials and 2) clinical somatosensory phenotypes assessed with quantitative sensory testing. RESULTS: Sixteen individuals (mean age 61 years) with either degenerative (N=13) or post-traumatic (N=3) cervical myelopathy participated in the study. Most individuals presented with mild myelopathy (modified Japanese Orthopaedic Association score (mJOA)>15; N=13). 71% of individuals presented with structural damage within spinal nociceptive pathways on MRI. Yet, 50% of these individuals presented with complete functional sparing (i.e., normal contact heat-, cold-, and pinprick- evoked potentials). The extent of structural damage within spinal nociceptive pathways was neither associated with functional integrity of thermal (heat: p=0.57; cold: p=0.49) and mechano-nociceptive pathways (p=0.83) nor with the clinical somatosensory phenotype (heat: p=0.16; cold: p=0.37; mechanical: p=0.73). The amount of structural damage to the spinothalamic tract did not correlate with spinothalamic conduction velocity (p>0.05; rho=-0.11). CONCLUSIONS: Our findings provide neurophysiological evidence to substantiate that structural damage in the spinal cord does not equate to functional somatosensory deficits. This study recognizes the pronounced structure-function paradox in cervical myelopathies and underlines the inevitable need for a multi-modal phenotyping approach to reveal the eloquence of lesions within somatosensory pathways.

3.
Pain Med ; 21(11): 2839-2849, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176283

RESUMO

OBJECTIVE: Descending pain modulation can be experimentally assessed by way of testing conditioned pain modulation. The application of tonic heat as a test stimulus in such paradigms offers the possibility of observing dynamic pain responses, such as adaptation and temporal summation of pain. Here we investigated conditioned pain modulation effects on tonic heat employing participant-controlled temperature, an alternative tonic heat pain assessment. Changes in pain perception are thereby represented by temperature adjustments performed by the participant, uncoupling this approach from direct pain ratings. Participant-controlled temperature has emerged as a reliable and sex-independent measure of tonic heat. METHODS: Thirty healthy subjects underwent a sequential conditioned pain modulation paradigm, in which a cold water bath was applied as the conditioning stimulus and tonic heat as a test stimulus. Subjects were instructed to change the temperature of the thermode in response to variations in perception to tonic heat in order to maintain their initial rating over a two-minute period. Two additional test stimuli (i.e., lower limb noxious withdrawal reflex and pressure pain threshold) were included as positive controls for conditioned pain modulation effects. RESULTS: Participant-controlled temperature revealed conditioned pain modulation effects on temporal summation of pain (P = 0.01). Increased noxious withdrawal reflex thresholds (P = 0.004) and pressure pain thresholds (P < 0.001) in response to conditioning also confirmed inhibitory conditioned pain modulation effects. CONCLUSIONS: The measured interaction between conditioned pain modulation and temporal summation of pain supports the participant-controlled temperature approach as a promising method to explore dynamic inhibitory and facilitatory pain processes previously undetected by rating-based approaches.


Assuntos
Temperatura Alta , Dor , Humanos , Medição da Dor , Limiar da Dor , Temperatura
4.
Neurotrauma Rep ; 1(1): 2-4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34223524

RESUMO

Coronavirus disease 2019 (COVID-19) can lead to considerable lung damage and even death. Less is known about the effects of COVID-19 on the cardiovascular system. In their recent JAMA Cardiology article, Shi and colleagues reported an association between cardiac injury and higher risk of in-hospital mortality in patients with COVID-19. Approximately 20% (82 patients) of the study cohort presented with a cardiac injury. The investigators identified cardiac injury as an independent risk factor of mortality during hospitalization (52% with cardiac injury vs. 5% without cardiac injury, p < 0.001). Consequently, their findings are highly relevant for patients with pre-existing cardiovascular and cerebrovascular diseases. Among those are patients with neurological disorders. There is a considerable prevalence of myocardial injury in patients with acute neurological illness, which appears to adversely affect prognosis. Individuals with an underlying neurological disorder are particularly vulnerable to increased cardio-cerebrovascular disease risk due to physical limitations and the pathophysiology of their condition. Thus, we would like to specifically highlight the attention of health care professionals treating patients with pervasive neurological disorders to their potentially elevated risk of poorer COVID-19 related outcomes.

5.
Front Neurol ; 10: 90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837931

RESUMO

Neuropathic pain represents a primary detrimental outcome of spinal cord injury. A major challenge facing effective management is a lack of surrogate measures to examine the physiology and anatomy of neuropathic pain. To this end, we investigated the relationship between psychophysical responses to tonic heat stimulation and neuropathic pain rating after traumatic spinal cord injury. Subjects provided a continuous rating to 2 min of tonic heat at admission to rehabilitation and again at discharge. Adaptation, temporal summation of pain, and modulation profile (i.e., the relationship between adaptation and temporal summation of pain) were extracted from tonic heat curves for each subject. There was no association between any of the tonic heat outcomes and neuropathic pain severity at admission. The degree of adaptation, the degree of temporal summation of pain, and the modulation profile did not change significantly from admission to discharge. However, changes in modulation profiles between admission and discharge were significantly correlated with changes in neuropathic pain severity (p = 0.027; R 2 = 0.323). The modulation profile may represent an effective measure to track changes in neuropathic pain severity from early to later stages of spinal cord injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...