Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(9): 090403, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083675

RESUMO

Generation, storage, and utilization of correlated many-body quantum states are crucial objectives of future quantum technologies and metrology. Such states can be generated by the spin-squeezing protocols, i.e., one-axis twisting and two-axis countertwisting. In this Letter, we show activation of these two squeezing mechanisms in a system composed of ultracold atomic fermions in the Mott insulating phase by a position-dependent laser coupling of atomic internal states. Realization of both the squeezing protocols is feasible in the current state-of-the-art experiments.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33344798

RESUMO

There has been a recent surge of interest and progress in creating subwavelength free-space optical potentials for ultracold atoms. A key open question is whether geometric potentials, which are repulsive and ubiquitous in the creation of subwavelength free-space potentials, forbid the creation of narrow traps with long lifetimes. Here, we show that it is possible to create such traps. We propose two schemes for realizing subwavelength traps and demonstrate their superiority over existing proposals. We analyze the lifetime of atoms in such traps and show that long-lived bound states are possible. This work allows for subwavelength control and manipulation of ultracold matter, with applications in quantum chemistry and quantum simulation.

3.
Phys Rev Res ; 2(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-34796336

RESUMO

We propose and describe our realization of a deeply subwavelength optical lattice for ultracold neutral atoms using N resonantly Raman-coupled internal degrees of freedom. Although counterpropagating lasers with wavelength λ provided two-photon Raman coupling, the resultant lattice period was λ/2N, an N-fold reduction as compared to the conventional λ/2 lattice period. We experimentally demonstrated this lattice built from the three F = 1 Zeeman states of a 87Rb Bose-Einstein condensate, and generated a lattice with a λ/6 = 132 nm period from λ = 790 nm lasers. Lastly, we show that adding an additional rf-coupling field converts this lattice into a superlattice with N wells uniformly spaced within the original λ/2 unit cell.

4.
Sci Rep ; 6: 37679, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27883037

RESUMO

We study the ground-state behavior of a Bose-Einstein Condensate (BEC) in a Raman-laser-assisted one-dimensional (1D) optical lattice potential forming a multilayer system. We find that, such system can be described by an effective model with spin-orbit coupling (SOC) of pseudospin (N-1)/2, where N is the number of layers. Due to the intricate interplay between atomic interactions, SOC and laser-assisted tunnelings, the ground-state phase diagrams generally consist of three phases-a stripe, a plane wave and a normal phase with zero-momentum, touching at a quantum tricritical point. More important, even though the single-particle states only minimize at zero-momentum for odd N, the many-body ground states may still develop finite momenta. The underlying mechanisms are elucidated. Our results provide an alternative way to realize an effective spin-orbit coupling of Bose gas with the Raman-laser-assisted optical lattice, and would also be beneficial to the studies on SOC effects in spinor Bose systems with large spin.

5.
Artigo em Inglês | MEDLINE | ID: mdl-29732442

RESUMO

We propose a cold-atom realization of a zigzag ladder. The two legs of the ladder correspond to a "synthetic" dimension given by two internal (spin) states of the atoms, so that tunneling between them can be realized as a laser-assisted process. The zigzag geometry is achieved by employing a spin-dependent optical lattice with the site position depending on the internal atomic state, i.e., on the ladder's leg. The lattice offers a possibility to tune the single-particle dispersion from a double-well to a single-minimum configuration. In contrast to previously considered semisynthetic lattices with a square geometry, the tunneling in the synthetic dimension is accompanied by spatial displacements of atoms. Therefore, the atom-atom interactions are nonlocal and act along the diagonal (semisynthetic) direction. We investigate the ground-state properties of the system for the case of strongly interacting bosons. In particular, we find that the interplay between the frustration induced by the magnetic field and the interactions gives rise to an interesting gapped phase at fractional filling factors corresponding to one particle per magnetic unit cell.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31098433

RESUMO

We propose a method for creating far-field optical barrier potentials for ultracold atoms with widths that are narrower than the diffraction limit and can approach tens of nanometers. The reduced widths stem from the nonlinear atomic response to control fields that create spatially varying dark resonances. The subwavelength barrier is the result of the geometric scalar potential experienced by an atom prepared in such a spatially varying dark state. The performance of this technique, as well as its applications to the study of many-body physics and to the implementation of quantum-information protocols with ultracold atoms, are discussed, with a focus on the implementation of tunnel junctions.

7.
Rep Prog Phys ; 77(12): 126401, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25422950

RESUMO

Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle-the graviton-that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms 'feeling' laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials-both Abelian and non-Abelian-in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.

8.
Phys Rev Lett ; 112(4): 043001, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580445

RESUMO

We describe a simple technique for generating a cold-atom lattice pierced by a uniform magnetic field. Our method is to extend a one-dimensional optical lattice into the "dimension" provided by the internal atomic degrees of freedom, yielding a synthetic two-dimensional lattice. Suitable laser coupling between these internal states leads to a uniform magnetic flux within the two-dimensional lattice. We show that this setup reproduces the main features of magnetic lattice systems, such as the fractal Hofstadter-butterfly spectrum and the chiral edge states of the associated Chern insulating phases.

9.
Phys Rev Lett ; 110(8): 085301, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23473158

RESUMO

We show how density dependent gauge potentials can be induced in dilute gases of ultracold atoms using light-matter interactions. We study the effect of the resulting interacting gauge theory and show how it gives rise to novel topological states in the ultracold gas. We find in particular that the onset of persistent currents in a ring geometry is governed by a critical number of particles. The density-dependent gauge potential is also found to support chiral solitons in a quasi-one-dimensional ultracold Bose gas.

10.
Phys Rev Lett ; 104(3): 033903, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366643

RESUMO

We describe a method to create effective gauge potentials for stationary-light polaritons. When stationary light is created in the interaction with a rotating ensemble of coherently driven double-Lambda type atoms, the equation of motion is that of a massive Schrödinger particle in a magnetic field. Since the effective interaction area for the polaritons can be made large, degenerate Landau levels can be created with degeneracy well above 100. This opens up the possibility to study the bosonic analogue of the fractional quantum Hall effect for interacting stationary-light polaritons.

11.
Phys Rev Lett ; 105(17): 173603, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21231045

RESUMO

We consider the interaction of two weak probe fields of light with an atomic ensemble coherently driven by two pairs of standing wave laser fields in a tripod-type linkage scheme. The system is shown to exhibit a Dirac-like spectrum for light-matter quasiparticles with multiple dark states, termed spinor slow-light polaritons. They posses an "effective speed of light" given by the group velocity of slow light, and can be made massive by inducing a small two-photon detuning. Control of the two-photon detuning can be used to locally vary the mass including a sign flip. Particularly, this allows the implementation of the random-mass Dirac model for which localized zero-energy (midgap) states exist with unusual long-range correlations.

12.
Phys Rev Lett ; 95(1): 010404, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16090590

RESUMO

We show that the adiabatic motion of ultracold, multilevel atoms in spatially varying laser fields can give rise to effective non-Abelian gauge fields if degenerate adiabatic eigenstates of the atom-laser interaction exist. A pair of such degenerate dark states emerges, e.g., if laser fields couple three internal states of an atom to a fourth common one under pairwise two-photon-resonance conditions. For this so-called tripod scheme we derive general conditions for truly non-Abelian gauge potentials and discuss special examples. In particular we show that using orthogonal laser beams with orbital angular momentum an effective magnetic field can be generated that has a monopole component.

13.
Phys Rev Lett ; 93(3): 033602, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15323821

RESUMO

We investigate the effect of slow light propagating in a degenerate atomic Fermi gas. In particular we use slow light with an orbital angular momentum. We present a microscopic theory for the interplay between light and matter and show how the slow light can provide an effective magnetic field acting on the electrically neutral fermions, a direct analogy of the free electron gas in an uniform magnetic field. As an example we illustrate how the corresponding de Haas-van Alphen effect can be seen in a gas of neutral atomic fermions.

16.
Phys Rev B Condens Matter ; 49(13): 8751-8763, 1994 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10009655
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...