Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 11: 336, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30598698

RESUMO

BACKGROUND: Ensiling cannot be utilized as a stand-alone pretreatment for sugar-based biorefinery processes but, in combination with hydrothermal processing, it can enhance pretreatment while ensuring a stable long-term storage option for abundant but moist biomass. The effectiveness of combining ensiling with hydrothermal pretreatment depends on biomass nature, pretreatment, and silage conditions. RESULTS: In the present study, the efficiency of the combined pretreatment was assessed by enzymatic hydrolysis and ethanol fermentation, and it was demonstrated that ensiling of sugarcane bagasse produces organic acids that can partly degrade biomass structure when in combination with hydrothermal treatment, with the consequent improvement of the enzymatic hydrolysis of cellulose and of the overall 2G bioethanol process efficiency. The optimal pretreatment conditions found in this study were those using ensiling and/or hydrothermal pretreatment at 190 °C for 10 min as this yielded the highest overall glucose recovery yield and ethanol yield from the raw material (0.28-0.30 g/g and 0.14 g/g, respectively). CONCLUSION: Ensiling prior to hydrothermal pretreatment offers a controlled solution for wet storage and long-term preservation for sugarcane bagasse, thus avoiding the need for drying. This preservation method combined with long-term storage practice can be an attractive option for integrated 1G/2G bioethanol plants, as it does not require large capital investments or energy inputs and leads to comparable or higher overall sugar recovery and ethanol yields.

2.
Biotechnol Biofuels ; 9: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26819628

RESUMO

BACKGROUND: Utilization of lignocellulosic feedstocks for bioenergy production in developing countries demands competitive but low-tech conversion routes. White-rot fungi (WRF) inoculation and ensiling are two methods previously investigated for low-tech pretreatment of biomasses such as wheat straw (WS). This study was undertaken to assess whether a combination of forced ensiling with Lactobacillus buchneri and WRF treatment using a low cellulase fungus, Ceriporiopsis subvermispora, could produce a relevant pretreatment effect on WS for bioethanol and biogas production. RESULTS: A combination of the ensiling and WRF treatment induced efficient pretreatment of WS by reducing lignin content and increasing enzymatic sugar release, thereby enabling an ethanol yield of 66 % of the theoretical max on the WS glucan, i.e. a yield comparable to yields obtained with high-tech, large-scale pretreatment methods. The pretreatment effect was reached with only a minor total solids loss of 5 % by weight mainly caused by the fungal metabolism. The combination of the biopretreatments did not improve the methane potential of the WS, but improved the initial biogas production rate significantly. CONCLUSION: The combination of the L. buchneri ensiling and C. subvermispora WRF treatment provided a significant improvement in the pretreatment effect on WS. This combined biopretreatment produced particularly promising results for ethanol production.

3.
Waste Manag ; 46: 15-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26421480

RESUMO

Reliable national data on waste generation and composition that will inform effective planning on waste management in Ghana is absent. To help obtain this data on a regional basis, selected households in each region were recruited to obtain data on rate of waste generation, physical composition of waste, sorting and separation efficiency and per capita of waste. Results show that rate of waste generation in Ghana was 0.47 kg/person/day, which translates into about 12,710 tons of waste per day per the current population of 27,043,093. Nationally, biodegradable waste (organics and papers) was 0.318 kg/person/day and non-biodegradable or recyclables (metals, glass, textiles, leather and rubbers) was 0.096 kg/person/day. Inert and miscellaneous waste was 0.055 kg/person/day. The average household waste generation rate among the metropolitan cities, except Tamale, was high, 0.72 kg/person/day. Metropolises generated higher waste (average 0.63 kg/person/day) than the municipalities (0.40 kg/person/day) and the least in the districts (0.28 kg/person/day) which are less developed. The waste generation rate also varied across geographical locations, the coastal and forest zones generated higher waste than the northern savanna zone. Waste composition was 61% organics, 14% plastics, 6% inert, 5% miscellaneous, 5% paper, 3% metals, 3% glass, 1% leather and rubber, and 1% textiles. However, organics and plastics, the two major fractions of the household waste varied considerably across the geographical areas. In the coastal zone, the organic waste fraction was highest but decreased through the forest zone towards the northern savanna. However, through the same zones towards the north, plastic waste rather increased in percentage fraction. Households did separate their waste effectively averaging 80%. However, in terms of separating into the bin marked biodegradables, 84% effectiveness was obtained whiles 76% effectiveness for sorting into the bin labeled other waste was achieved.


Assuntos
Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos , Gana , Projetos Piloto , Reciclagem , Fatores Socioeconômicos
4.
Appl Biochem Biotechnol ; 175(5): 2589-601, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542239

RESUMO

Pretreating lignocellulosic biomass for cellulosic ethanol production in a West African setting requires smaller scale and less capital expenditure compared to current state of the art. In the present study, three low-tech methods applicable for West African conditions, namely Boiling Pretreatment (BP), Soaking in Aqueous Ammonia (SAA) and White Rot Fungi pretreatment (WRF), were compared to the high-tech solution of hydrothermal pretreatment (HTT). The pretreatment methods were tested on 11 West African biomasses, i.e. cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches. It was found that four biomass' (plantain peelings, plantain trunks, maize cobs and maize stalks) were most promising for production of cellulosic ethanol with profitable enzymatic conversion of glucan (>30 g glucan per 100 g total solids (TS)). HTT did show better results in both enzymatic convertibility and fermentation, but evaluated on the overall ethanol yield the low-tech pretreatment methods are viable alternatives with similar levels to the HTT (13.4-15.2 g ethanol per 100 g TS raw material).


Assuntos
Etanol/metabolismo , Fungos/metabolismo , Microbiologia Industrial/métodos , Lignina/metabolismo , Plantas/química , África Ocidental , Biomassa , Etanol/análise , Fermentação , Temperatura Alta , Lignina/química , Plantas/metabolismo , Plantas/microbiologia
5.
Biotechnol Biofuels ; 7: 95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25024743

RESUMO

BACKGROUND: Ensiling may act as a pretreatment of fresh grass biomass and increase the enzymatic conversion of structural carbohydrates to fermentable sugars. However, ensiling does not provide sufficient severity to be a standalone pretreatment method. Here, ensiling of grass is combined with hydrothermal treatment (HTT) with the aim of improving the enzymatic biomass convertibility and decrease the required temperature of the HTT. RESULTS: Grass silage (Festulolium Hykor) was hydrothermally treated at temperatures of 170, 180, and 190°C for 10 minutes. Relative to HTT treated dry grass, ensiling increased the solubilization of dry matter (DM) during HTT and gave increased glucan content, but lower lignin in the insoluble fiber fraction. Ensiling improved glucose yields in the enzymatic hydrolysis of the washed solid fiber fraction at the lower HTT temperatures. At 170°C glucose yield improved from 17 to 24 (w/w)% (45 to 57% cellulose convertibility), and at 180°C glucose yield improved from 22 to 29 (w/w)% (54 to 69% cellulose convertibility). Direct HTT of grass at 190°C gave the same high glucose yield as for grass silage (35 (w/w)% (77% cellulose convertibility)) and improved xylan yields (27% xylan convertibility). The effect of ensiling of grass prior to HTT improved the enzymatic conversion of cellulose for HTT at 170 and 180°C, but the increased glucose release did not make up for the loss of water soluble carbohydrates (WSC) during ensiling. Overall, sugar yields (C6 + C5) were similar for HTT of grass and grass silage at both 170 and 180°C, but at 190°C the overall sugar yield was better for HTT of dry grass. CONCLUSIONS: This study unequivocally establishes that ensiling of grass as a biomass pretreatment method comes with a loss of WSC. The loss of WSC by ensiling is not necessarily compensated for by providing a lower temperature requirement for HTT for high enzymatic monosaccharide release. However, ensiling can be an advantageous storage method prior to grass processing.

6.
Biotechnol Biofuels ; 7: 74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860617

RESUMO

BACKGROUND: Biomass recalcitrance is affected by a number of chemical, physical and biological factors. In this study we looked into the differences in recalcitrance between two major anatomical fractions of wheat straw biomass, leaf and stem. A set of twenty-one wheat cultivars was fractionated and illustrated the substantial variation in leaf-to-stem ratio between cultivars. The two fractions were compared in terms of chemical composition, enzymatic convertibility, cellulose crystallinity and glucan accessibility. The use of water as a probe for assessing glucan accessibility was explored using low field nuclear magnetic resonance and infrared spectroscopy in combination with hydrogen-deuterium exchange. RESULTS: Leaves were clearly more degradable by lignocellulolytic enzymes than stems, and it was demonstrated that xylose removal was more linked to glucose yield for stems than for leaves. Comparing the locations of water in leaf and stem by low field NMR and FT-IR revealed that the glucan hydroxyl groups in leaves were more accessible to water than glucan hydroxyl groups in stems. No difference in crystallinity between leaf and stem was observed using wide angle x-ray diffraction. Hydrothermal pretreatment increased the accessibility towards water in stems but not in leaves. The results in this study indicate a correlation between the accessibility of glucan to water and to enzymes. CONCLUSIONS: Enzymatic degradability of wheat straw anatomical fractions can be indicated by the accessibility of the hydroxyl groups to water. This suggests that water may be used to assess glucan accessibility in biomass samples.

7.
Bioresour Technol ; 153: 165-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362358

RESUMO

Salicornia bigelovii straw was characterized and evaluated as a potential lignocellulosic bioethanol feedstock. S. bigelovii used in the study was grown in the United Arab Emirates using saltwater (40ppt) for irrigation. Salt removal was performed prior to pretreatment to protect the processing equipment and avoid inhibition of enzymes and yeast. Composition of the washed biomass was comparable to traditional lignocellulosic biomasses with relatively high glucan and xylan content (26 and 22g/100gDM, respectively) but with lower lignin content (7g/100gDM). The washed feedstock was subjected to hydrothermal pretreatment, producing highly digestible (up to 92% glucan-to-glucose conversion) and fermentable (up to 100% glucose-to-ethanol conversion) fiber fractions. Liquid fractions obtained in the pretreatment did not show inhibition towards Saccharomyces cerevisiae. No significant differences among the enzymatic convertibility and microbial fermentability of the fibers as well as low xylose recoveries suggest that lower severity pretreatment conditions could be exploited for S. bigelovii.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Celulase/metabolismo , Chenopodiaceae/metabolismo , Etanol/metabolismo , Temperatura , Água/farmacologia , Biomassa , Metabolismo dos Carboidratos/efeitos dos fármacos , Chenopodiaceae/efeitos dos fármacos , Fermentação/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo
8.
Biotechnol Biofuels ; 6: 116, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23945109

RESUMO

BACKGROUND: Ensiling is a well-known method for preserving green biomasses through anaerobic production of organic acids by lactic acid bacteria. In this study, wheat straw is subjected to ensiling in combination with hydrothermal treatment as a combined pretreatment method, taking advantage of the produced organic acids. RESULTS: Ensiling for 4 weeks was accomplished in a vacuum bag system after addition of an inoculum of Lactobacillus buchneri and 7% w/w xylose to wheat straw biomass at 35% final dry matter. Both glucan and xylan were preserved, and the DM loss after ensiling was less than 0.5%. When comparing hydrothermally treated wheat straw (170, 180 and 190°C) with hydrothermally treated ensiled wheat straw (same temperatures), several positive effects of ensiling were revealed. Glucan was up-concentrated in the solid fraction and the solubilisation of hemicellulose was significantly increased. Subsequent enzymatic hydrolysis of the solid fractions showed that ensiling significantly improved the effect of pretreatment, especially at the lower temperatures of 170 and 180°C. The overall glucose yields after pretreatments of ensiled wheat straw were higher than for non-ensiled wheat straw hydrothermally treated at 190°C, namely 74-81% of the theoretical maximum glucose in the raw material, which was ~1.8 times better than the corresponding yields for the non-ensiled straw pretreated at 170 or 180°C. The highest overall conversion of combined glucose and xylose was achieved for ensiled wheat straw hydrothermally treated at 180°C, with overall glucose yield of 78% and overall conversion yield of xylose of 87%. CONCLUSIONS: Ensiling of wheat straw is shown to be an effective pre-step to hydrothermal treatment, and can give rise to a welcomed decrease of process temperature in hydrothermal treatments, thereby potentially having a positive effect on large scale pretreatment costs.

9.
Bioresour Technol ; 133: 370-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23434815

RESUMO

In this work hydrothermally pretreated wheat straw was used for production of bioethanol by Saccharomyces cerevisiae and carotene-enriched biomass by red yeasts Rhodotorula glutinis, Cystofilobasidium capitatum and Sporobolomyces roseus. To evaluate the convertibility of pretreated wheat straw into ethanol, simultaneous saccharification and fermentation of S. cerevisiae was performed under semi-anaerobic conditions. The highest ethanol production efficiency of 65-66% was obtained following pretreatment at 200°C without the catalytic action of acetic acid, and at 195 and 200°C respectively in the presence of catalyst. Red yeast strain S. roseus produced 1.73-2.22 mg g(-1) of ergosterol on the filter cake, 1.15-4.17 mg g(-1) of ergosterol and 1.23-1.56 mg g(-1) of ß-carotene on pretreated wheat straw hydrolysates and also the highest amount of carotenoids and ergosterol on untreated wheat straw (1.70 and 4.17 mg g(-1), respectively).


Assuntos
Biocombustíveis/microbiologia , Biomassa , Biotecnologia/métodos , Etanol/metabolismo , Temperatura , Triticum/efeitos dos fármacos , Água/farmacologia , Reatores Biológicos/microbiologia , Carboidratos/química , Carotenoides/metabolismo , Ergosterol/biossíntese , Glucose/metabolismo , Hidrólise/efeitos dos fármacos , Resíduos/análise , Leveduras/efeitos dos fármacos , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
10.
Bioresour Technol ; 104: 440-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22154299

RESUMO

The addition of a biorefinery to an organic farm was investigated, where ethanol was produced from germinated rye grains and whey, and the effluent was separated into two streams: the protein-rich solid fraction, to be used as animal feed, and the liquid fraction, which can be co-digested with clover grass silage to produce biogas. A method for ethanol production from rye was applied by utilizing inherent amylase activity from germination of the seed. Biogas potential of ethanol fermentation effluent was measured through anaerobic digestion trials. The effluent from the trials was assumed to serve as natural fertilizer. A technoeconomic analysis was also performed; total capital investment was estimated to be approximately 4 M USD. Setting a methane selling price according to available incentives for "green electricity" (0.72 USD/m(3)) led to a minimum ethanol selling price of 1.89 USD/L (project lifetime 25 yr, at a discount rate 10%).


Assuntos
Ração Animal/microbiologia , Biocombustíveis/microbiologia , Proteínas Alimentares/metabolismo , Etanol/metabolismo , Fertilizantes/microbiologia , Agricultura Orgânica/métodos , Etanol/isolamento & purificação , Projetos Piloto
11.
Appl Biochem Biotechnol ; 165(3-4): 1010-23, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21728026

RESUMO

The potential of wheat straw for ethanol production after pretreatment with O(3) generated in a plasma at atmospheric pressure and room temperature followed by fermentation was investigated. We found that cellulose and hemicellulose remained unaltered after ozonisation and a subsequent washing step, while lignin was degraded up to 95% by O(3). The loss of biomass after washing could be explained by the amount of lignin degraded. The washing water of pretreated samples (0-7 h) was analyzed for potential fermentation inhibitors. Approximately 30 lignin degradation products and a number of simple carboxylic acids and phenolic compounds were found, e.g., vanillic acid, acetic acid, and formic acid. Some components had the highest concentration at the beginning of the ozonisation process (0.5, 1 h), e.g., 4-hydroxybenzladehyde, while the concentration of others increased during the entire pretreatment (0-7 h), e.g., oxalic acid and acetovanillon. Interestingly, washing had no effect on the ethanol production with pretreatment times up to 1 h. Washing improved the glucose availability with pretreatment times of more than 2 h. One hour of ozonisation was found to be optimal for the use of washed and unwashed wheat straw for ethanol production (maximum ethanol yield, 52%). O(3) cost estimations were made for the production of ethanol at standard conditions.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Etanol/metabolismo , Lignina/metabolismo , Ozônio/metabolismo , Gases em Plasma/química , Triticum/metabolismo , Acetofenonas/metabolismo , Benzaldeídos/metabolismo , Biomassa , Ácidos Carboxílicos/metabolismo , Fermentação , Glucose/metabolismo , Hidrólise , Ozônio/química , Gases em Plasma/metabolismo , Temperatura , Fatores de Tempo , Ácido Vanílico/metabolismo
12.
J Ind Microbiol Biotechnol ; 38(2): 283-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20632200

RESUMO

Ethanol production by K. marxianus in whey from organic cheese production was examined in batch and continuous mode. The results showed that no pasteurization or freezing of the whey was necessary and that K. marxianus was able to compete with the lactic acid bacteria added during cheese production. The results also showed that, even though some lactic acid fermentation had taken place prior to ethanol fermentation, K. marxianus was able to take over and produce ethanol from the remaining lactose, since a significant amount of lactic acid was not produced (1-2 g/l). Batch fermentations showed high ethanol yield (~0.50 g ethanol/g lactose) at both 30°C and 40°C using low pH (4.5) or no pH control. Continuous fermentation of nonsterilized whey was performed using Ca-alginate-immobilized K. marxianus. High ethanol productivity (2.5-4.5 g/l/h) was achieved at dilution rate of 0.2/h, and it was concluded that K. marxianus is very suitable for industrial ethanol production from whey.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Etanol/metabolismo , Kluyveromyces/metabolismo , Queijo , Etanol/análise , Fermentação , Concentração de Íons de Hidrogênio , Lactose/metabolismo , Temperatura
13.
Appl Microbiol Biotechnol ; 86(1): 367-75, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19967354

RESUMO

Although oyster mushroom (Pleurotus spp.) is a valuable food, cultivated worldwide on an industrial scale, still very little is known about the microbial dynamics during oyster mushroom substrate preparation. Therefore, the characterization of the microbial dynamics by chemical and biological tools was the objective of this study. During substrate preparation, enzymatic digestibility of the substrate improved by 77%, whereas the cellulose and hemicellulose to lignin ratios decreased by 9% and 19%, respectively. Fluorescein diacetate hydrolysis reached its minimum value at the temperature maximum of the process during the composting phase and exceeded the initial level at the end of the process. Fungal species played part in the initial mesophilic phase of the substrate preparation process, but they disappeared after pasteurization in tunnels at constant elevated temperatures. Changes in the microbiota showed a marked bacterial community succession during substrate preparation investigated by 16S ribosomal deoxyribonucleic acid-based terminal restriction fragment length polymorphism (T-RFLP). Mature samples represented the least variance, which indicated the effect of the standardized preparation protocol. The relation between mushroom yield and the bacterial community T-RFLP fingerprints was investigated, but the uniformity of mushroom yields did not support any significant correlation.


Assuntos
Bactérias , Biotecnologia/métodos , Ecossistema , Fungos , Medicago/metabolismo , Pleurotus , Triticum/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Impressões Digitais de DNA/métodos , DNA Ribossômico/análise , DNA Ribossômico/genética , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética
14.
Appl Biochem Biotechnol ; 155(1-3): 386-96, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19214791

RESUMO

Common reed (Phragmites australis) is often recognized as a promising source of renewable energy. However, it is among the least characterized crops from the bioethanol perspective. Although one third of reed dry matter is cellulose, without pretreatment, it resists enzymatic hydrolysis like lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose by cellulases more than three times compared to the untreated control. During this wet oxidation, 51.7% of the hemicellulose and 58.3% of the lignin were solubilized, whereas 87.1% of the cellulose remained in the solids. After enzymatic hydrolysis of pretreated fibers from the same treatment, the conversion of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical.


Assuntos
Etanol/metabolismo , Fermentação/fisiologia , Poaceae/química , Poaceae/metabolismo , Biotecnologia/métodos , Celulases/metabolismo , Celulose/química , Celulose/metabolismo , Cromatografia Líquida de Alta Pressão , Fontes Geradoras de Energia , Lignina/química , Lignina/metabolismo , Oxirredução , Polissacarídeos/química , Polissacarídeos/metabolismo
15.
Appl Biochem Biotechnol ; 153(1-3): 151-62, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19015818

RESUMO

Sweet sorghum is an attractive feedstock for ethanol production. The juice extracted from the fresh stem is composed of sucrose, glucose, and fructose and can therefore be readily fermented to alcohol. The solid fraction left behind, the so-called bagasse, is a lignocellulosic residue which can also be processed to ethanol. The objective of our work was to test sweet sorghum, the whole crop, as a potential raw material of ethanol production, i.e., both the extracted sugar juice and the residual bagasse were tested. The juice was investigated at different harvesting dates for sugar content. Fermentability of juices extracted from the stem with and without leaves was compared. Sweet sorghum bagasse was steam-pretreated using various pretreatment conditions (temperatures and residence times). Efficiency of pretreatments was characterized by the degree of cellulose hydrolysis of the whole pretreated slurry and the separated fiber fraction. Two settings of the studied conditions (190 degrees C, 10 min and 200 degrees C, 5 min) were found to be efficient to reach conversion of 85-90%.


Assuntos
Celulose/metabolismo , Etanol/metabolismo , Sorghum/metabolismo , Biotecnologia/métodos , Cromatografia Líquida de Alta Pressão , Fontes Geradoras de Energia , Hidrólise , Lignina/metabolismo , Modelos Teóricos
16.
Appl Biochem Biotechnol ; 137-140(1-12): 847-58, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18478439

RESUMO

Lignocellulosic materials represent an abundant feedstock for bioethanol production. Because of their complex structure pretreatment is necessary to make it accessible for enzymatic attack. Steam pretreatment with or without acid catalysts seems to be one of the most promising techniques, which has already been applied for large variety of lignocellulosics in order to improve enzymatic digestibility. During this process a range of toxic compounds (lignin and sugar degradation products) are formed which inhibit ethanol fermentation. In this study, the toxicity of hemicellulose hydrolysates obtained in the steam pretreatment of spruce, willow, and corn stover were investigated in ethanol fermentation tests using a yeast strain, which has been previously reported to have a resistance to inhibitory compounds generated during steam pretreatment. To overcome bacterial contamination, fermentations were carried out at low initial pH. The fermentability of hemicellulose hydrolysates of pretreated lignocellulosic substrates at low pH gave promising results with the economically profitable final 5 vol% ethanol concentration corresponding to 85% of theoretical. Adaptation experiments have shown that inhibitor tolerance of yeast strain can be improved by subsequent transfer of the yeast to inhibitory medium.


Assuntos
Etanol/metabolismo , Lignina/química , Lignina/metabolismo , Saccharomyces cerevisiae/fisiologia , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Saccharomyces cerevisiae/citologia
17.
Appl Biochem Biotechnol ; 113-116: 497-508, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15054273

RESUMO

This study addressed the utilization of an industrial waste stream, paper sludge, as a renewable cheap feedstock for the fermentative production of hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus. Hydrogen, acetate, and lactate were produced in medium in which paper sludge hydrolysate was added as the sole carbon and energy source and in control medium with the same concentration of analytical grade glucose and xylose. The hydrogen yield was dependent on lactate formation and varied between 50 and 94% of the theoretical maximum. The carbon balance in the medium with glucose and xylose was virtually 100%. The carbon balance was not complete in the paper sludge medium because the measurement of biomass was impaired owing to interfering components in the paper sludge hydrolysate. Nevertheless, >85% of the carbon could be accounted for in the products acetate and lactate. The maximal volumetric hydrogen production rate was 5 to 6 mmol/(L x h), which was lower than the production rate in media with glucose, xylose, or a combination of these sugars (9-11 mmol/[L x h]). The reduced hydrogen production rate suggests the presence of inhibiting components in paper sludge hydrolysate.


Assuntos
Bactérias/metabolismo , Glucose/química , Hidrogênio/química , Xilose/química , Reatores Biológicos , Carboidratos/química , Carbono/química , Relação Dose-Resposta a Droga , Fermentação , Resíduos Industriais , Modelos Químicos , Papel , Temperatura , Fatores de Tempo
18.
Appl Biochem Biotechnol ; 105 -108: 557-66, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12721435

RESUMO

The main objective of this study was to develop a system for the production of "renewable" hydrogen. Paper sludge is a solid industrial waste yielding mainly cellulose, which can be used, after hydrolysis, as a feedstock in anaerobic fermentation by (hyper)thermophilic organisms, such as Thermotoga elfii and Caldicellulosiruptor saccharolyticus. Tests on different medium compositions showed that both bacteria were able to produce hydrogen from paper sludge hydrolysate, but the amount of produced hydrogen and the requirement for other components differed. Hydrogen production by T. elfii strongly depended on the presence of yeast extract and salts. By contrast, C. saccharolyticus was less dependent on medium components but seemed to be inhibited by a component present in the sludge hydrolysate. Utilization of xylose was preferred over glucose by C. saccharolyticus.


Assuntos
Bactérias/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/metabolismo , Hidrogênio/isolamento & purificação , Papel , Esgotos/química , Metabolismo dos Carboidratos , Meios de Cultura , Glucose/metabolismo , Hidrólise , Resíduos Industriais , Oligoelementos/análise , Xilose/metabolismo , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...