Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 144, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413860

RESUMO

BACKGROUND: Aphanomyces euteiches is a soil-borne oomycete that causes root rot in pea and other legume species. Symptoms of Aphanomyces root rot (ARR) include root discoloration and wilting, leading to significant yield losses in pea production. Resistance to ARR is known to be polygenic but the roles of single genes in the pea immune response are still poorly understood. This study uses transcriptomics to elucidate the immune response of two pea genotypes varying in their levels of resistance to A. euteiches. RESULTS: In this study, we inoculated roots of the pea (P. sativum L.) genotypes 'Linnea' (susceptible) and 'PI180693' (resistant) with two different A. euteiches strains varying in levels of virulence. The roots were harvested at 6 h post-inoculation (hpi), 20 hpi and 48 hpi, followed by differential gene expression analysis. Our results showed a time- and genotype-dependent immune response towards A. euteiches infection, involving several WRKY and MYB-like transcription factors, along with genes associated with jasmonic acid (JA) and abscisic acid (ABA) signaling. By cross-referencing with genes segregating with partial resistance to ARR, we identified 39 candidate disease resistance genes at the later stage of infection. Among the genes solely upregulated in the resistant genotype 'PI180693', Psat7g091800.1 was polymorphic between the pea genotypes and encoded a Leucine-rich repeat receptor-like kinase reminiscent of the Arabidopsis thaliana FLAGELLIN-SENSITIVE 2 receptor. CONCLUSIONS: This study provides new insights into the gene expression dynamics controlling the immune response of resistant and susceptible pea genotypes to A. euteiches infection. We present a set of 39 candidate disease resistance genes for ARR in pea, including the putative immune receptor Psat7g091800.1, for future functional validation.


Assuntos
Aphanomyces , Resistência à Doença , Resistência à Doença/genética , Locos de Características Quantitativas , Aphanomyces/genética , Pisum sativum/genética , Doenças das Plantas/genética , Perfilação da Expressão Gênica
2.
Front Plant Sci ; 14: 1114408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998689

RESUMO

The cultivation of vining pea (Pisum sativum) faces a major constraint with root rot diseases, caused by a complex of soil-borne pathogens including the oomycetes Aphanomyces euteiches and Phytophtora pisi. Disease resistant commercial varieties are lacking but the landrace PI180693 is used as a source of partial resistance in ongoing pea breeding programs. In this study, the level of resistance and their interaction with A. euteiches virulence levels of six new back-crossed pea breeding lines, deriving from the cross between the susceptible commercial cultivar Linnea and PI180693, were evaluated for their resistance towards aphanomyces root rot in growth chamber and green house tests. Resistance towards mixed infections by A. euteiches and P. pisi and commercial production traits were evaluated in field trials. In growth chamber trials, pathogen virulence levels had a significant effect on plant resistance, as resistance was more consistent against A. euteiches strains exhibiting high or intermediate virulence compared with lowly virulent strains. In fact, line Z1701-1 showed to be significantly more resistant than both parents when inoculated with a lowly virulent strain. In two separate field trials in 2020, all six breeding lines performed equally well as the resistant parent PI180693 at sites only containing A. euteiches, as there were no differences in disease index. In mixed infections, PI180693 exhibited significantly lower disease index scores than Linnea. However, breeding lines displayed higher disease index scores compared with PI180693, indicating higher susceptibility towards P. pisi. Data on seedling emergence from the same field trials suggested that PI180693 was particularly sensitive towards seed decay/damping off disease caused by P. pisi. Furthermore, the breeding lines performed equally well as Linnea in traits important for green pea production, again emphasizing the commercial potential. In summary, we show that the resistance from PI180693 interacts with virulence levels of the pathogen A. euteiches and is less effective towards root rot caused by P. pisi. Our results show the potential use of combining PI180693 partial resistance against aphanomyces root rot with commercially favorable breeding traits in commercial breeding programs.

3.
Mol Biol Evol ; 37(3): 839-848, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730193

RESUMO

Plant genomes have evolved several evolutionary mechanisms to tolerate and make use of transposable elements (TEs). Of these, transposon domestication into cis-regulatory and microRNA (miRNA) sequences is proposed to contribute to abiotic/biotic stress adaptation in plants. The wheat genome is derived at 85% from TEs, and contains thousands of miniature inverted-repeat transposable elements (MITEs), whose sequences are particularly prone for domestication into miRNA precursors. In this study, we investigate the contribution of TEs to the wheat small RNA immune response to the lineage-specific, obligate powdery mildew pathogen. We show that MITEs of the Mariner superfamily contribute the largest diversity of miRNAs to the wheat immune response. In particular, MITE precursors of miRNAs are wide-spread over the wheat genome, and highly conserved copies are found in the Lr34 and QPm.tut-4A mildew resistance loci. Our work suggests that transposon domestication is an important evolutionary force driving miRNA functional innovation in wheat immunity.


Assuntos
Elementos de DNA Transponíveis , MicroRNAs/genética , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Adaptação Biológica , Resistência à Doença , Domesticação , Evolução Molecular , Dosagem de Genes , Variação Genética , RNA de Plantas/genética , Triticum/genética , Triticum/microbiologia
4.
Nat Commun ; 10(1): 2292, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123263

RESUMO

The wheat Pm3 resistance gene against the powdery mildew pathogen occurs as an allelic series encoding functionally different immune receptors which induce resistance upon recognition of isolate-specific avirulence (AVR) effectors from the pathogen. Here, we describe the identification of five effector proteins from the mildew pathogens of wheat, rye, and the wild grass Dactylis glomerata, specifically recognized by the PM3B, PM3C and PM3D receptors. Together with the earlier identified AVRPM3A2/F2, the recognized AVRs of PM3B/C, (AVRPM3B2/C2), and PM3D (AVRPM3D3) belong to a large group of proteins with low sequence homology but predicted structural similarities. AvrPm3b2/c2 and AvrPm3d3 are conserved in all tested isolates of wheat and rye mildew, and non-host infection assays demonstrate that Pm3b, Pm3c, and Pm3d are also restricting the growth of rye mildew on wheat. Furthermore, divergent AVR homologues from non-adapted rye and Dactylis mildews are recognized by PM3B, PM3C, or PM3D, demonstrating their involvement in host specificity.


Assuntos
Ascomicetos/fisiologia , Proteínas Fúngicas/imunologia , Especificidade de Hospedeiro , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Triticum/imunologia , Ascomicetos/isolamento & purificação , Ascomicetos/patogenicidade , Dactylis/microbiologia , Resistência à Doença/imunologia , Grão Comestível/imunologia , Grão Comestível/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Estudo de Associação Genômica Ampla , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Secale/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...