Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 24(12): 13142-56, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410332

RESUMO

We report an electrically pumped 1550 nm MEMS tunable VCSEL with a continuous tuning of 101 nm at 22 °C. The top MEMS-DBR with built-in stress gradient within the dielectric layers is deposited in a low-temperature PECVD chamber on an InP-based half-VCSEL, structured by surface-micromachining and electrothermally actuated for continuous wavelength tuning. With 2.6 mA threshold current, the laser shows maximum CW output power of 3.2 mW at 1560 nm. The MEMS-VCSEL operates in single-mode with SMSR > 39 dB across the entire tuning range. At 36 °C, the tuning range reaches up to 107 nm. The divergence angle of the MEMS-VCSEL is approximately 5.6° for all tuning wavelengths. The intrinsic linewidth of an unpackaged device is 21 MHz. Quasi-error-free operation at 12.5 Gbps using a directly modulated MEMS-VCSEL is reported for a record 60 nm tuning, showing the potential of the so-called colorless source in WDM applications.

2.
Opt Express ; 19(16): 15490-505, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21934912

RESUMO

We use an empirical model together with experimental measurements for studying mechanisms contributing to thermal rollover in vertical-cavity surface-emitting lasers (VCSELs). The model is based on extraction of the temperature dependence of threshold current, internal quantum efficiency, internal optical loss, series resistance and thermal impedance from measurements of output power, voltage and lasing wavelength as a function of bias current over an ambient temperature range of 15-100 °C. We apply the model to an oxide-confined, 850-nm VCSEL, fabricated with a 9-µm inner-aperture diameter and optimized for high-speed operation, and show for this specific device that power dissipation due to linear power dissipation (sum total of optical absorption, carrier thermalization, carrier leakage and spontaneous carrier recombination) exceeds power dissipation across the series resistance (quadratic power dissipation) at any ambient temperature and bias current. We further show that the dominant contributors to self-heating for this particular VCSEL are quadratic power dissipation, internal optical loss, and carrier leakage. A rapid reduction of the internal quantum efficiency at high bias currents (resulting in high temperatures) is identified as being the major cause of thermal rollover. Our method is applicable to any VCSEL and is useful for identifying the mechanisms limiting the thermal performance of the device and to formulate design strategies to ameliorate them.

3.
Opt Lett ; 31(21): 3170-2, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17041671

RESUMO

The spectroscopic application of a new broadband microelectromechanical-system-tunable vertical cavity surface-emitting laser with single-mode coverage of 60 nm (245 cm(-1)) in a single, continuous sweep is described. The operation of the device is illustrated with high-resolution spectra of CO and CO2 over 110 cm(-1) (27 nm) and 67 cm(-1) (17 nm), respectively, with the CO band shown for high-pressure scans between 1 and 3 bars (0.1-0.3 MPa). The achieved tuning range opens up new opportunities for tunable diode laser absorption spectroscopy. The spectra were compared with HITRAN-derived model calculations. The benefits of a sensor based on this laser are greater speed, laser power, and tuning range.

4.
Opt Express ; 13(20): 8008-14, 2005 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-19498830

RESUMO

In this paper, we present an InP-based micromechanically tunable VCSEL emitting in the 1.55microm wavelength region with a 26nm tuning range. The laser is based on a two-chip concept, allowing for a separate optimization of the curved top mirror and the amplifying component. Current confinement is achieved by a buried tunnel junction. The design of the microcavity ensures fundamental mode operation with a side mode suppression ratio exceeding 49dB even for large apertures. Simulations indicate that the tuning range is limited by coupled cavity effects and reveal important design criteria like an upper boundary regarding the device thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...