Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 15(1): 1-3, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38237550

RESUMO

Signaling pathways feature multiple interacting ligand and receptor variants, which are thought to act in a combinatorial manner to elicit different cellular responses. Transcriptome analyses now suggest that many signaling pathways use their components in combinations that are surprisingly often shared between otherwise dissimilar cell states.


Assuntos
Perfilação da Expressão Gênica , Transdução de Sinais , Transdução de Sinais/fisiologia , Ligantes
2.
Elife ; 112022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149406

RESUMO

During vertebrate embryogenesis, the germ layers are patterned by secreted Nodal signals. In the classical model, Nodals elicit signaling by binding to a complex comprising Type I/II Activin receptors (Acvr) and the co-receptor Tdgf1. However, it is currently unclear whether receptor binding can also affect the distribution of Nodals themselves through the embryo, and it is unknown which of the putative Acvr paralogs mediate Nodal signaling in zebrafish. Here, we characterize three Type I (Acvr1) and four Type II (Acvr2) homologs and show that - except for Acvr1c - all receptor-encoding transcripts are maternally deposited and present during zebrafish embryogenesis. We generated mutants and used them together with combinatorial morpholino knockdown and CRISPR F0 knockout (KO) approaches to assess compound loss-of-function phenotypes. We discovered that the Acvr2 homologs function partly redundantly and partially independently of Nodal to pattern the early zebrafish embryo, whereas the Type I receptors Acvr1b-a and Acvr1b-b redundantly act as major mediators of Nodal signaling. By combining quantitative analyses with expression manipulations, we found that feedback-regulated Type I receptors and co-receptors can directly influence the diffusion and distribution of Nodals, providing a mechanism for the spatial restriction of Nodal signaling during germ layer patterning.


Building a body is complicated. Cells must organise themselves head-to-tail, belly-to-back, and inside-to-outside. They do this by laying down a chemical map, which is made up of gradients of molecular signals, high in some places and lower in others. The amount of signal each cell receives helps to decide which part of the body it will become. One of the essential signals in developing vertebrates is Nodal. It helps cells to tell inside from outside and left from right. Cells detect Nodal using an activin receptor and co-receptor complex, which catch hold of passing Nodal proteins and transmit developmental signals into cells. An important model to study Nodal signals is the zebrafish embryo, but the identity of the activin receptors and their exact role in this organism has been unclear. To find out more, Preiß, Kögler, Mörsdorf et al. studied the activin receptors Acvr1 and Acvr2 in zebrafish embryos. The experiments revealed that two putative Acvr1 and four Acvr2 receptors were present during early development. To better understand their roles, Preiß et al. eliminated them one at a time, and in combination. Losing single activin receptors had no effect. But losing both Acvr1 receptors together stopped Nodal signalling and changed the distribution of the Nodal gradient. Loss of all Acvr2 receptors also caused developmental problems, but they were partly independent of Nodal. This suggests that Acvr1s seem to be able to transmit signals and to shape the Nodal gradient, and that Acvr2s might have another, so far unknown, role. Nodal signals guide the development of all vertebrates. Understanding how they work in a model species like zebrafish could shed light on their role in other species, including humans. A clearer picture could help to uncover what happens at a molecular level when development goes wrong.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Retroalimentação , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento
3.
J Vis Exp ; (174)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34398162

RESUMO

Classical embryological manipulations, such as removing cells and transplanting cells within or between embryos, are powerful techniques to study complex developmental processes. Zebrafish embryos are ideally suited for these manipulations since they are easily accessible, relatively large in size, and transparent. However, previously developed devices for cell removal and transplantation are cumbersome to use or expensive to purchase. In contrast, the transplantation device presented here is economical, easy to assemble, and simple to use. In this protocol, we first introduce the handling of the transplantation device as well as its assembly from commercially and widely available parts. We then present three applications for its use: generation of ectopic clones to study signal dispersal from localized sources, extirpation of cells to produce size-reduced embryos, and germline transplantation to generate maternal-zygotic mutants. Finally, we show that the tool can also be used for embryological manipulations in other species such as the Japanese rice fish medaka.


Assuntos
Oryzias , Peixe-Zebra , Animais , Células Germinativas , Zigoto
4.
Dev Cell ; 56(16): 2348-2363.e8, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34363757

RESUMO

Many developmental regulators have complex and context-specific roles in different tissues and stages, making the dissection of their function extremely challenging. As regulatory processes often occur within minutes, perturbation methods that match these dynamics are needed. Here, we present the improved light-inducible nuclear export system (iLEXY), an optogenetic loss-of-function approach that triggers translocation of proteins from the nucleus to the cytoplasm. By introducing a series of mutations, we substantially increased LEXY's efficiency and generated variants with different recovery times. iLEXY enables rapid (t1/2 < 30 s), efficient, and reversible nuclear protein depletion in embryos, and is generalizable to proteins of diverse sizes and functions. Applying iLEXY to the Drosophila master regulator Twist, we phenocopy loss-of-function mutants, precisely map the Twist-sensitive embryonic stages, and investigate the effects of timed Twist depletions. Our results demonstrate the power of iLEXY to dissect the function of pleiotropic factors during embryogenesis with unprecedented temporal precision.


Assuntos
Núcleo Celular/metabolismo , Optogenética/métodos , Transporte Ativo do Núcleo Celular , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Embrião não Mamífero/metabolismo , Mutação com Perda de Função , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...