Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(11): 4485-4499, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766733

RESUMO

With increasing interest in RNA as a therapeutic and a potential target, the role of RNA structures has become more important. Even slight changes in nucleobases, such as modifications or protomeric and tautomeric states, can have a large impact on RNA structure and function, while local environments in turn affect protonation and tautomerization. In this work, the application of empirical tools for pKa and tautomer prediction for RNA modifications was elucidated and compared with ab initio quantum mechanics (QM) methods and expanded toward macromolecular RNA structures, where QM is no longer feasible. In this regard, the Protonate3D functionality within the molecular operating environment (MOE) was expanded for nucleobase protomer and tautomer predictions and applied to reported examples of altered protonation states depending on the local environment. Overall, observations of nonstandard protomers and tautomers were well reproduced, including structural C+G:C(A) and A+GG motifs, several mismatches, and protonation of adenosine or cytidine as the general acid in nucleolytic ribozymes. Special cases, such as cobalt hexamine-soaked complexes or the deprotonation of guanosine as the general base in nucleolytic ribozymes, proved to be challenging. The collected set of examples shall serve as a starting point for the development of further RNA protonation prediction tools, while the presented Protonate3D implementation already delivers reasonable protonation predictions for RNA and DNA macromolecules. For cases where higher accuracy is needed, like following catalytic pathways of ribozymes, incorporation of QM-based methods can build upon the Protonate3D-generated starting structures. Likewise, this protonation prediction can be used for structure-based RNA-ligand design approaches.


Assuntos
Conformação de Ácido Nucleico , Teoria Quântica , RNA , Ligantes , RNA/química , Modelos Moleculares , Prótons , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...