Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(21): 11173-11183, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753444

RESUMO

To prevent eutrophication, controlling the phosphate concentration levels is one of the most important issues in surface water management. One of the most utilized methods is phosphate adsorption. However, its application faces a bottleneck due to the unclear understanding of adsorption and interaction mechanisms. The present work unlocks the phosphorus adsorption mechanisms in three-dimensional reduced graphene oxide with different reduction levels and pore sizes to remove phosphate from water using experiments and multiscale simulations. Experiments were performed to evaluate the influence of pH, ionic strength, and temperature on the adsorption. Molecular Dynamics and Ab Initio simulations evaluated the influence of the pore size and oxidation degrees of the materials. We show that the adsorption capacity of the materials increases with increasing pH and ionic strength and decreasing temperature. It is observed that the more oxidized the material and the less compact the structure, the better the adsorption. These results are theoretically explained in terms of the interaction of functional groups and the clustering of phosphate ions, which results in better adsorption in materials with larger pores. The underlying mechanisms for the 3D-reduced graphene oxide performance were confirmed by spectroscopy analysis. All the results show that 3D-reduced graphene oxide can sorb phosphate in different complex water remediation systems with characteristics that can be modulated by changing the material synthesis method.

2.
RSC Adv ; 13(49): 34852-34865, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38035251

RESUMO

This study presents a comprehensive analysis encompassing the synthesis, structural elucidation, photophysical behavior, and electrochemical properties of a novel series of chalcogen-naphthoquinone-1,2,3-triazole hybrids. Employing a meticulously designed protocol, the synthesis of these hybrids, denoted as 11a-j, was achieved with remarkable efficiency (yielding up to 81%). This synthesis used a regioselective copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC). Furthermore, a detailed investigation into the photophysical characteristics, TDDFT calculations, electrochemical profiles, and photobiological attributes of compounds 11a-j was conducted. This exploration aimed to unravel insights into the excited state behaviors of these molecules, as well as their redox properties. Such insights are crucial for future applications of these derivatives in diverse biological assays.

3.
Phys Rev E ; 108(3-1): 034116, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849113

RESUMO

Modeling water and other liquids in computational simulations requires a large set of parameters. Many works have been devoted to finding new, improved water models, with almost all of them designed for bulk systems. Here, we use carbon nanotubes as a play model to investigate the effects of introducing flexibility in water force fields during molecular dynamics simulations of nanoconfined water. We explore six different models to show that viscosity, diffusion, and dipole orientation are vastly influenced by the flexibility and the family of force fields used. Particularly, we found the level of confinement (decreasing the nanotube's diameter) to increase discrepancies in the description of the dipole alignment. In smaller (10,10) nanotubes, the flexible version of the transferable intermolecular potential with three points (TIP3P/Fs) features a high directionality, while its rigid counterpart shows a more distributed dipole orientation. Both viscosity and diffusion are also extremely dependent on the force-field family, with the flexible version of the simple point charge (SPC/Fw) featuring the lower confidence interval.

4.
RSC Adv ; 13(16): 11121-11129, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37056965

RESUMO

In this work, the synthesis, characterization and photophysical assays of a new trans-A2B-corrole derivative from the naturally occurring quinone are described. ß-Lapachone is a naturally occurring quinoidal compound that provides highly fluorescent heterocyclic compounds such as lapimidazoles. The new trans-A2B-corrole compound was obtained from the reaction between 2,3,4,5,6-(pentafluorophenyl)dipyrromethane and the lapimidazole bearing an aldehyde group. The dyad was characterized by high-resolution mass spectrometry (HRMS), NMR spectroscopy (1H, COSY 2D, HMBC, 19F), FT-IR, UV-vis, steady-state and time-resolved fluorescence, electrochemical studies (CV), TD-DFT analysis and photobiological experiments, in which includes aggregation, stability in solution, photostability and partition coefficients assays. Finally, ROS generation assays were performed using 1,3-diphenylisobenzofuran (DPBF) method and the presented compound showed significant photostability and singlet oxygen production.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122500, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827812

RESUMO

The singlet oxygen generation by electronically excited molecules in photodynamic therapy (PDT) requires light absorption within a specific wavelength window, and a subsequent intersystem crossing transition to a triplet excited state that is, at least, 0.98 eV higher in energy than the singlet ground state. Tetrapyrrolic macrocycles, such as porphyrin and corrole, have been widely used in oxygen singlet generation for PDT. Suitable functionalization can potentialize these macrocycles as photosensitizers. In this contribution, we use Density Functional Theory (DFT) calculations to determine the structural, electronic and spectroscopic properties of corrole macrocycles bound to different polycyclic aromatic groups in the gas phase, dichloromethane, and water. We also calculate the spin-orbit coupling (SOC) matrix elements of the intersystem crossing channels involving the first excited singlet states and excited triplet states. The results for optical absorption show that the threshold wavelength for optical absorption increases with the polarity of the environment and the number of aromatic rings of the ligands, whereas the oscillator strengths increase with the polarity of the environment but decrease with the number of aromatic rings. It is verified that the triplet excited states involved in the intersystem crossing transitions satisfy the energy requirement for the oxygen singlet generation. The magnitude of spin-orbit coupling (SOC) matrix elements associated with the intersystem crossing are also seen to be dependent on the environment involving the corrole molecules, and on the number of aromatic rings of the ligands connected to the corrole. Further, the binding of the functionalized corrole molecules with biomolecules as the calf thymus DNA and human serum albumin is studied and characterized through molecular docking. These results show that the corrole macrocycles, suitably functionalized with polycyclic aromatic groups, fulfill several criteria to be considered as good PDT photosensitizers.


Assuntos
Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/química , Simulação de Acoplamento Molecular , Ligantes , Modelos Teóricos , Porfirinas/química , Oxigênio
6.
Nanoscale Adv ; 4(3): 884-893, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131814

RESUMO

Contact electrification (triboelectrification) has been a long-standing phenomenon for 2600 years. The scientific understanding of contact electrification (triboelectrification) remains un-unified as the term itself implies complex phenomena involving mechanical contact/sliding of two materials involving many physico-chemical processes. Recent experimental evidence suggests that electron transfer occurs in contact electrification between solids and liquids besides the traditional belief of ion adsorption. Here, we have illustrated the Density Functional Theory (DFT) formalism based on a first-principles theory coupled with temperature-dependent ab initio molecular dynamics to describe the phenomenon of interfacial charge transfer. The model captures charge transfer dynamics upon adsorption of different ions and molecules on AlN (001), GaN (001), and Si (001) surfaces, which reveals the influence of interfacial charge transfer and can predict charge transfer differences between materials. We have depicted the substantial difference in charge transfer between fluids and solids when different ions (ions that contribute to physiological pH variations in aqueous solutions, e.g., HCl for acidic pH, and NaOH for alkaline pH) are adsorbed on the surfaces. Moreover, a clear picture has been provided based on the electron localization function as conclusive evidence of contact electrification, which may shed light on solid-liquid interfaces.

7.
Phys Chem Chem Phys ; 23(31): 17033-17040, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342330

RESUMO

Single layers of hexagonal boron nitride (h-BN) and silicene are brought together to form h-BN/silicene van der Waals (vdW) heterostructures. The effects of external electric fields and compressive strain on their structural and electronic properties are systematically studied through first principles calculations. Two silicene phases are considered: the low-buckled Si(LB) and the dumbbell-like Si(DB). They show exciting new properties as compared to the isolated layers, such as a tunable band gap that depends on the interlayer distance and is dictated by the charge transfer and orbital hybridization between h-BN and silicene, especially in the case of Si(LB). The electric field also increases the band gap in h-BN/Si(DB) and causes an asymmetric charge rearrangement in h-BN/Si(LB). Remarkably, we found a great potential of h-BN layers to function as substrates for silicene, enhancing both the strain and electric field effects on its electronic properties. These results contribute to a more detailed understanding of h-BN/Si 2D-based materials, highlighting promising possibilities in low-dimensional electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...