Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nitric Oxide ; 87: 31-42, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862476

RESUMO

The gaseous mediators nitric oxide (NO), carbon monoxide (CO) and lately also hydrogen sulfide (H2S) have been described to contribute to the interplay of protein type- and lipid mediators in the regulation of wound healing. In particular, the recently reported role of H2S in skin repair remains largely unresolved. Therefore we assessed the expressional kinetics of potential H2S-producing enzymes during undisturbed skin repair: the cystathionine-γ-lyase (CSE), the cystathionine-ß-synthase (CBS) and the 3-mercaptopyruvate sulfurtransferase (MPST). All three enzymes were not transcriptionally induced upon wounding and remained silent through the acute inflammatory and proliferative phase of skin repair. By contrast, CSE expression started to increase significantly at the later stages of healing, when cellular proliferation ceases within the granulation tissue and neoepidermis. The importance of H2S production in late healing phases was supported by a strong induction of otherwise not-induced CBS to complement the loss of CSE function in CSE-deficient mice. Immunohistochemistry revealed hair follicle keratinocytes and basal keratinocytes of the neo-epidermis covering the wound area as sources of CSE expression. Subsequent in vitro studies implicated a role of CSE-derived H2S for keratinocyte differentiation: the H2S-donor GYY4137 markedly increased the Ca2+-triggered expression of the early keratinocyte differentiation markers cytokeratin 10 (CK10) and involucrin (IVN) in cultured human keratinocytes. Here, GYY4137-derived H2S strongly enhanced CK10 expression by increasing the binding of RNA polymerase II to the CK10 promoter.


Assuntos
Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Queratina-10/metabolismo , Queratinócitos/metabolismo , Cicatrização/fisiologia , Animais , Cistationina gama-Liase/genética , Feminino , Humanos , Camundongos Endogâmicos C57BL , RNA Polimerase II/metabolismo , Pele/patologia , TATA Box , Ferimentos e Lesões/patologia
2.
J Mol Med (Berl) ; 95(3): 257-271, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28054119

RESUMO

Renal mesangial cells are regarded as main players in glomerular inflammatory diseases. To investigate a possible crosstalk between inflammatory and hypoxia-driven signaling processes, we stimulated cultured mouse mesangial cells with different inflammatory agents and analyzed the expression of prolyl hydroxylase domain containing proteins (PHDs), the main regulators of hypoxia-inducible factor (HIF) stability. Administration of IL-1ß (1 nM) and TNF-α (1 nM), a combination further referred to as cytokine mix (CM), resulted in a fivefold increase in PHD3 but not PHD1 and PHD2 mRNA expression compared to untreated controls. In contrast, a combination of IL-1ß, TNF-α with lipopolysaccharide (10 µg/ml), and interferon-γ (20 ng/ml) designated as CM+ showed a high (60-fold) induction of PHD3 and a moderate (twofold) induction of PHD2 mRNA expression. Interestingly, CM+ but not CM induced the expression of inducible NO synthase and endogenously produced NO was responsible for the immense induction of PHD3 in mesangial cells treated with CM+. We found that CM+ affected PHD3 expression mainly via the NO/HIF axis, whereas PHD3 regulation by CM occurred in a NF-κB-dependent manner. In turn, silencing of PHD3 expression resulted in a decrease in the mRNA expression of ICAM-1, MIP-2, MCP-1, and CXCL-10, which are under control of NF-κB. In a rat model of mesangio-proliferative glomerulonephritis, PHD3 mRNA and protein expression was markedly induced and this effect was nearly abolished when rats were treated with the iNOS-specific inhibitor L-NIL, thus confirming our findings also in vivo. KEY MESSAGE: PHD3 expression induced by cytokines is NF-κB dependent in mesangial cells. Endogenously produced NO further augments PHD3 expression via HIF-1α. PHD3 expression is induced by NO in anti-Thy-1 glomerulonephritis.


Assuntos
Glomerulonefrite/genética , Óxido Nítrico/imunologia , Pró-Colágeno-Prolina Dioxigenase/genética , Regulação para Cima , Animais , Células Cultivadas , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Humanos , Interleucina-1beta/imunologia , Células Mesangiais/imunologia , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Pró-Colágeno-Prolina Dioxigenase/imunologia , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/imunologia
3.
J Cereb Blood Flow Metab ; 37(8): 3015-3026, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27909266

RESUMO

Despite the efficacy of neuroprotective approaches in animal models of stroke, their translation has so far failed from bench to bedside. One reason is presumed to be a low quality of preclinical study design, leading to bias and a low a priori power. In this study, we propose that the key read-out of experimental stroke studies, the volume of the ischemic damage as commonly measured by free-handed planimetry of TTC-stained brain sections, is subject to an unrecognized low inter-rater and test-retest reliability with strong implications for statistical power and bias. As an alternative approach, we suggest a simple, open-source, software-assisted method, taking advantage of automatic-thresholding techniques. The validity and the improvement of reliability by an automated method to tMCAO infarct volumetry are demonstrated. In addition, we show the probable consequences of increased reliability for precision, p-values, effect inflation, and power calculation, exemplified by a systematic analysis of experimental stroke studies published in the year 2015. Our study reveals an underappreciated quality problem in translational stroke research and suggests that software-assisted infarct volumetry might help to improve reproducibility and therefore the robustness of bench to bedside translation.


Assuntos
Infarto Encefálico/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Ataque Isquêmico Transitório/diagnóstico por imagem , Software , Animais , Encéfalo/irrigação sanguínea , Infarto Encefálico/etiologia , Modelos Animais de Doenças , Ataque Isquêmico Transitório/complicações , Masculino , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Pesquisa Translacional Biomédica
4.
Sci Rep ; 6: 29808, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411966

RESUMO

H2S is an important signalling molecule involved in diverse biological processes. It mediates the formation of cysteine persulfides (R-S-SH), which affect the activity of target proteins. Like thiols, persulfides show reactivity towards electrophiles and behave similarly to other cysteine modifications in a biotin switch assay. In this manuscript, we report on qPerS-SID a mass spectrometry-based method allowing the isolation of persulfide containing peptides in the mammalian proteome. With this method, we demonstrated that H2S donors differ in their efficacy to induce persulfides in HEK293 cells. Furthermore, data analysis revealed that persulfide formation affects all subcellular compartments and various cellular processes. Negatively charged amino acids appeared more frequently adjacent to cysteines forming persulfides. We confirmed our proteomic data using pyruvate kinase M2 as a model protein and showed that several cysteine residues are prone to persulfide formation finally leading to its inactivation. Taken together, the site-specific identification of persulfides on a proteome scale can help to identify target proteins involved in H2S signalling and enlightens the biology of H2S and its releasing agents.


Assuntos
Peptídeos/química , Proteoma/química , Proteômica/métodos , Sulfetos/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Cromatografia Líquida/métodos , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Células HEK293 , Humanos , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Sulfetos/metabolismo
5.
Brain Res ; 1624: 380-389, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26271715

RESUMO

Accumulating lines of evidence indicate that hydrogen sulfide (H2S) contributes to the processing of chronic pain. However, the sources of H2S production in the nociceptive system are poorly understood. Here we investigated the expression of the H2S releasing enzyme cystathionine γ-lyase (CSE) in the nociceptive system and characterized its role in chronic pain signaling using CSE deficient mice. We show that paw inflammation and peripheral nerve injury led to upregulation of CSE expression in dorsal root ganglia. However, conditional knockout mice lacking CSE in sensory neurons as well as global CSE knockout mice demonstrated normal pain behaviors in inflammatory and neuropathic pain models as compared to WT littermates. Thus, our results suggest that CSE is not critically involved in chronic pain signaling in mice and that sources different from CSE mediate the pain relevant effects of H2S.


Assuntos
Cistationina gama-Liase/metabolismo , Gânglios Espinais/metabolismo , Sulfeto de Hidrogênio/metabolismo , Inflamação/metabolismo , Neuralgia/metabolismo , Animais , Cistationina gama-Liase/genética , Modelos Animais de Doenças , Formaldeído/toxicidade , Regulação da Expressão Gênica/genética , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Neuralgia/patologia , Medição da Dor , Medula Espinal/metabolismo , Regulação para Cima , Zimosan/farmacologia
6.
Biochem Pharmacol ; 93(3): 362-9, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25437456

RESUMO

Glomerular mesangial cells are smooth muscle cell-like pericytes and are regarded as key players in kidney diseases. In an inflammatory setting, these cells produce high amounts of inflammatory cytokines, chemokines and redox mediators such as reactive oxygen species or nitric oxide (NO). The temporal production of ROS, NO and other redox mediators markedly contributes to the final outcome of inflammatory diseases. Recently, we reported that platelet-derived growth factor forced mesangial cells to activate the regulatory subunit of protein kinase A (PKA RI) by a redox-dependent mechanism but independent from changes in cyclic AMP. This prompted us to further analyze the dimerization of PKA RI and activation of PKA-driven signalling in an inflammatory context. Stimulation of rat mesangial cells with interleukin-1ß and tumour necrosis factor-α [2 nM] induced the formation of PKA RI heterodimers in a time-dependent manner. PKA RI dimerization was accompanied with the formation of ROS, NO and peroxynitrite as well as a depletion of reduced glutathione. Furthermore, dimerization of PKA RI was paralleled by enhanced activity of PKA as shown by the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at serine 157 that was independent of the formation of cyclic AMP. Remarkably, exogenously administered peroxynitrite potently induced dimerization of PKA RI, whereas pharmacologic inhibition of inducible NO synthase (iNOS) and scavenging of peroxynitrite reduced PKA RI dimerization and VASP phosphorylation to control levels thus clearly indicating a causal role for endogenously formed peroxynitrite on PKA signalling. Consequently, the treatment of inflammatory diseases with anti-oxidants or NOS inhibitors may alter PKA activity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Citocinas/farmacologia , Rim/efeitos dos fármacos , Rim/enzimologia , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/enzimologia , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Oxirredução/efeitos dos fármacos , Ratos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...