Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 22(11): 938-50, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25647640

RESUMO

AIMS: Mitochondrial thioredoxin reductase (Txnrd2) is a central player in the control of mitochondrial hydrogen peroxide (H2O2) abundance by serving as a direct electron donor to the thioredoxin-peroxiredoxin axis. In this study, we investigated the impact of targeted disruption of Txnrd2 on tumor growth. RESULTS: Tumor cells with a Txnrd2 deficiency failed to activate hypoxia-inducible factor-1α (Hif-1α) signaling; it rather caused PHD2 accumulation, Hif-1α degradation and decreased vascular endothelial growth factor (VEGF) levels, ultimately leading to reduced tumor growth and tumor vascularization. Increased c-Jun NH2-terminal Kinase (JNK) activation proved to be the molecular link between the loss of Txnrd2, an altered mitochondrial redox balance with compensatory upregulation of glutaredoxin-2, and elevated PHD2 expression. INNOVATION: Our data provide compelling evidence for a yet-unrecognized mitochondrial Txnrd-driven, regulatory mechanism that ultimately prevents cellular Hif-1α accumulation. In addition, simultaneous targeting of both the mitochondrial thioredoxin and glutathione systems was used as an efficient therapeutic approach in hindering tumor growth. CONCLUSION: This work demonstrates an unexpected regulatory link between mitochondrial Txnrd and the JNK-PHD2-Hif-1α axis, which highlights how the loss of Txnrd2 and the resulting altered mitochondrial redox balance impairs tumor growth as well as tumor-related angiogenesis. Furthermore, it opens a new avenue for a therapeutic approach to hinder tumor growth by the simultaneous targeting of both the mitochondrial thioredoxin and glutathione systems.


Assuntos
Proliferação de Células , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Mitocôndrias/metabolismo , Neovascularização Patológica/metabolismo , Tiorredoxina Redutase 2/genética , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Xenoenxertos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Espécies Reativas de Oxigênio/metabolismo
2.
Circ Res ; 113(4): 408-17, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23770613

RESUMO

RATIONALE: Growing evidence indicates that oxidative stress contributes markedly to endothelial dysfunction. The selenoenzyme glutathione peroxidase 4 (Gpx4) is an intracellular antioxidant enzyme important for the protection of membranes by its unique activity to reduce complex hydroperoxides in membrane bilayers and lipoprotein particles. Yet a role of Gpx4 in endothelial cell function has remained enigmatic. OBJECTIVE: To investigate the role of Gpx4 ablation and subsequent lipid peroxidation in the vascular compartment in vivo. METHODS AND RESULTS: Endothelium-specific deletion of Gpx4 had no obvious impact on normal vascular homeostasis, nor did it impair tumor-derived angiogenesis in mice maintained on a normal diet. In stark contrast, aortic explants from endothelium-specific Gpx4 knockout mice showed a markedly reduced number of endothelial branches in sprouting assays. To shed light onto this apparent discrepancy between the in vivo and ex vivo results, we depleted mice of a second antioxidant, vitamin E, which is normally absent under ex vivo conditions. Therefore, mice were fed a vitamin E-depleted diet for 6 weeks before endothelial deletion of Gpx4 was induced by 4-hydroxytamoxifen. Surprisingly, ≈80% of the knockout mice died. Histopathological analysis revealed detachment of endothelial cells from the basement membrane and endothelial cell death in multiple organs, which triggered thrombus formation. Thromboembolic events were the likely cause of various clinical pathologies, including heart failure, renal and splenic microinfarctions, and paraplegia. CONCLUSIONS: Here, we show for the first time that in the absence of Gpx4, sufficient vitamin E supplementation is crucial for endothelial viability.


Assuntos
Glutationa Peroxidase/deficiência , Glutationa Peroxidase/genética , Trombose/etiologia , Trombose/mortalidade , Deficiência de Vitamina E/complicações , Vitamina E/genética , Animais , Apoptose/fisiologia , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Glutationa Peroxidase/metabolismo , Frequência Cardíaca/fisiologia , Peroxidação de Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Estresse Oxidativo/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Trombose/fisiopatologia , Vitamina E/metabolismo , Deficiência de Vitamina E/metabolismo , Deficiência de Vitamina E/fisiopatologia
3.
Cancer Res ; 70(22): 9505-14, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21045148

RESUMO

Tumor cells generate substantial amounts of reactive oxygen species (ROS), engendering the need to maintain high levels of antioxidants such as thioredoxin (Trx)- and glutathione (GSH)-dependent enzymes. Exacerbating oxidative stress by specifically inhibiting these types of ROS-scavenging enzymes has emerged as a promising chemotherapeutic strategy to kill tumor cells. However, potential redundancies among the various antioxidant systems may constrain this simple approach. Trx1 and thioredoxin reductase 1 (Txnrd1) are upregulated in numerous cancers, and Txnrd1 has been reported to be indispensable for tumorigenesis. However, we report here that genetic ablation of Txnrd1 has no apparent effect on tumor cell behavior based on similar proliferative, clonogenic, and tumorigenic potential. This finding reflects widespread redundancies between the Trx- and GSH-dependent systems based on evidence of a bypass to Txnrd1 deficiency by compensatory upregulation of GSH-metabolizing enzymes. Because the survival and growth of Txnrd1-deficient tumors were strictly dependent on a functional GSH system, Txnrd1-/- tumors were highly susceptible to experimental GSH depletion in vitro and in vivo. Thus, our findings establish for the first time that a concomitant inhibition of the two major antioxidant systems is highly effective in killing tumor, highlighting a promising strategy to combat cancer.


Assuntos
Fibroblastos/metabolismo , Glutationa/metabolismo , Tiorredoxina Redutase 1/metabolismo , Animais , Western Blotting , Ciclo Celular , Linhagem Celular Transformada , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos/citologia , Feminino , Fibroblastos/citologia , Dissulfeto de Glutationa/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiorredoxina Redutase 1/genética
4.
J Biol Chem ; 285(29): 22244-53, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20463017

RESUMO

GSH is the major antioxidant and detoxifier of xenobiotics in mammalian cells. A strong decrease of intracellular GSH has been frequently linked to pathological conditions like ischemia/reperfusion injury and degenerative diseases including diabetes, atherosclerosis, and neurodegeneration. Although GSH is essential for survival, the deleterious effects of GSH deficiency can often be compensated by thiol-containing antioxidants. Using three genetically defined cellular systems, we show here that forced expression of xCT, the substrate-specific subunit of the cystine/glutamate antiporter, in gamma-glutamylcysteine synthetase knock-out cells rescues GSH deficiency by increasing cellular cystine uptake, leading to augmented intracellular and surprisingly high extracellular cysteine levels. Moreover, we provide evidence that under GSH deprivation, the cytosolic thioredoxin/thioredoxin reductase system plays an essential role for the cells to deal with the excess amount of intracellular cystine. Our studies provide first evidence that GSH deficiency can be rescued by an intrinsic genetic mechanism to be considered when designing therapeutic rationales targeting specific redox enzymes to combat diseases linked to GSH deprivation.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Glutationa/deficiência , Tiorredoxina Redutase 1/metabolismo , Animais , Butionina Sulfoximina/farmacologia , Morte Celular/efeitos dos fármacos , Técnicas de Cocultura , Cisteína/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Glutamato-Cisteína Ligase/deficiência , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Tiorredoxina Redutase 1/deficiência , Tiorredoxina Redutase 2/deficiência , Tiorredoxina Redutase 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...