Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 59(8): 1577-84, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19403971

RESUMO

The migration of the species of chromium and ammonium in groundwater and their effective remediation depend on the various hydro-geological characteristics of the system. The computational modeling of the reactive transport problems is one of the most preferred tools for field engineers in groundwater studies to make decision in pollution abatement. The analytical models are less modular in nature with low computational demand where the modification is difficult during the formulation of different reactive systems. Numerical models provide more detailed information with high computational demand. Coupling of linear partial differential Equations (PDE) for the transport step with a non-linear system of ordinary differential equations (ODE) for the reactive step is the usual mode of solving a kinetically controlled reactive transport equation. This assumption is not appropriate for a system with low concentration of species such as chromium. Such reaction systems can be simulated using a stochastic algorithm. In this paper, a finite difference scheme coupled with a stochastic algorithm for the simulation of the transport of ammonium and chromium in subsurface media has been detailed.


Assuntos
Algoritmos , Cromo/química , Água Doce/química , Compostos de Amônio Quaternário/química , Poluentes Químicos da Água/química , Simulação por Computador , Modelos Químicos , Processos Estocásticos
2.
Ground Water ; 47(2): 306-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19016899

RESUMO

This article provides details of applying the method developed by the authors (Rubin et al. 2008b) for screening one-well hydraulic barrier design alternatives. The present article with its supporting information (manual and electronic spreadsheets with a case history example) provides the reader complete details and examples of solving the set of nonlinear equations developed by Rubin et al. (2008b). It allows proper use of the analytical solutions and also depicting the various charts given by Rubin et al. (2008b). The final outputs of the calculations are the required position and the discharge of the pumping well. If the contaminant source is nonaqueous phase liquid (NAPL) entrapped within the aquifer, then the method provides an estimate of the aquifer remediation progress (which is a by-product) due to operating the hydraulic barrier.


Assuntos
Modelos Teóricos , Movimentos da Água , Abastecimento de Água
3.
Ground Water ; 46(5): 743-54, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18266729

RESUMO

Abstract This study develops a robust method for screening one-well hydraulic barrier design alternatives that can be easily computed without a numerical simulation model. The paper outlines the general method and shows its implementation with hydraulic barriers using a single pumping well. For such barriers, the method is easily computable with spreadsheets and/or charts depicted within the paper and posted online. The method applies the potential flow theory, which leads to using a curvilinear coordinate system for all types of calculations. For contaminant transport calculations, the method applies the boundary layer theory. For calculations of aquifer remediation, the method refers to bulk characteristics of the domain. As an example, the method has been applied to calculate the possible containment of a wide part of the coastal plain aquifer in Israel, which is contaminated by entrapped kerosene (a light nonaqueous phase liquid).


Assuntos
Modelos Teóricos , Movimentos da Água , Algoritmos
4.
J Contam Hydrol ; 96(1-4): 128-49, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18191497

RESUMO

This study develops a modeling approach for simulating and evaluating entrapped light nonaqueous-phase liquid (light NAPL-LNAPL) dissolution and transport of the solute in a fractured permeable aquifer (FPA). The term FPA refers to an aquifer made of porous blocks of high permeability that embed fractures. The fracture network is part of the domain characterized by high permeability and negligible storage. Previous studies show that sandstone aquifers often represent FPAs. The basic model developed in this study is a two-dimensional (2-D) model of permeable blocks that embed oblique equidistant fractures with constant aperture and orientation. According to this model, two major parameters govern NAPL dissolution and transport of the solute. These parameters are: 1) the dimensionless interphase mass transfer coefficient, K(f0), and 2) the mobility number, N(M0). These parameters represent measures of heterogeneity affecting flow, NAPL dissolution, and transport of the solute in the domain. The parameter K(f0) refers to the rate at which organic mass is transferred from the NAPL into the water phase. The parameter N(M0) represents the ratio of flow through the porous blocks to flow through the fracture network in regions free of entrapped NAPL. It also provides a measure of groundwater flow bypassing regions contaminated by entrapped NAPL. In regions contaminated by entrapped NAPL our simulations have often indicated very low permeability of the porous blocks, enabling a significant increase of the fracture flow at the expense of the permeable block flow. Two types of constitutive relationships also affect the rate of FPA cleanup: 1) the relationship between the saturation of the entrapped NAPL and the permeability of the porous blocks, and 2) the relationships representing effects of the entrapped NAPL saturation and the permeable block flow velocity on rates of interphase mass transfer. This study provides basic tools for evaluating the characteristics of pump-and-treat cleanup of FPAs by referring to sets of parameters and constitutive relationships typical of FPAs. The numerical simulations carried out in this study show that at high initial saturation of the entrapped NAPL, during initial stages of the FPA cleanup the contaminant concentration increases, but later it decreases. This phenomenon originates from significant groundwater bypassing the NAPL entrapped in the permeable blocks via the fracture network.


Assuntos
Movimentos da Água , Simulação por Computador , Modelos Químicos , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...