Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(35): 18476-18477, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32941588

RESUMO

Correction for 'Live cell single molecule tracking and localization microscopy of bioorthogonally labeled plasma membrane proteins' by Andres I. König et al., Nanoscale, 2020, 12, 3236-3248, DOI: 10.1039/C9NR08594G.

2.
Nanoscale ; 12(5): 3236-3248, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31970355

RESUMO

Tracking the localization and mobility of individual proteins in live cells is key for understanding how they mediate their function. Such information can be obtained from single molecule imaging techniques including as Single Particle Tracking (SPT) and Single Molecule Localization Microscopy (SMLM). Genetic code expansion (GCE) combined with bioorthogonal chemistry offers an elegant approach for direct labeling of proteins with fluorescent dyes, holding great potential for improving protein labeling in single molecule applications. Here we calibrated conditions for performing SPT and live-SMLM of bioorthogonally labeled plasma membrane proteins in live mammalian cells. Using SPT, the diffusion of bioorthogonally labeled EGF receptor and the prototypical Shaker voltage-activated potassium channel (Kv) was measured and characterized. Applying live-SMLM to bioorthogonally labeled Shaker Kv channels enabled visualizing the plasma membrane distribution of the channel over time with ∼30 nm accuracy. Finally, by competitive labeling with two Fl-dyes, SPT and live-SMLM were performed in a single cell and both the density and dynamics of the EGF receptor were measured at single molecule resolution in subregions of the cell. We conclude that GCE and bioorthogonal chemistry is a highly suitable, flexible approach for protein labeling in quantitative single molecule applications that outperforms current protein live-cell labeling approaches.


Assuntos
Membrana Celular/metabolismo , Corantes Fluorescentes/química , Proteínas de Membrana/metabolismo , Imagem Individual de Molécula , Animais , Células COS , Chlorocebus aethiops , Microscopia de Fluorescência
3.
Sci Rep ; 8(1): 14527, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267004

RESUMO

Genetic code expansion enables the incorporation of non-canonical amino acids (ncAAs) into expressed proteins. ncAAs are usually encoded by a stop codon that is decoded by an exogenous orthogonal aminoacyl tRNA synthetase and its cognate suppressor tRNA, such as the pyrrolysine [Formula: see text] pair. In such systems, stop codon suppression is dependent on the intracellular levels of the exogenous tRNA. Therefore, multiple copies of the tRNAPyl gene (PylT) are encoded to improve ncAA incorporation. However, certain applications in mammalian cells, such as live-cell imaging applications, where labelled tRNAs contribute to background fluorescence, can benefit from the use of less invasive minimal expression systems. Accordingly, we studied the effect of tRNAPyl on live-cell fluorescence imaging of bioorthogonally-labelled intracellular proteins. We found that in COS7 cells, a decrease in PylT copy numbers had no measurable effect on protein expression levels. Importantly, reducing PylT copy numbers improved the quality of live-cell images by enhancing the signal-to-noise ratio and reducing an immobile tRNAPyl population. This enabled us to improve live cell imaging of bioorthogonally labelled intracellular proteins, and to simultaneously label two different proteins in a cell. Our results indicate that the number of introduced PylT genes can be minimized according to the transfected cell line, incorporated ncAA, and application.


Assuntos
Lisina/análogos & derivados , Biossíntese de Proteínas , RNA de Transferência/genética , Animais , Células COS , Chlorocebus aethiops , Códon de Terminação , Código Genético , Lisina/genética , Imagem Óptica , Proteínas/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...