Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1224356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492528

RESUMO

Introduction: Tularemia is mainly caused by Francisella tularensis (Ft) subsp. tularensis (Ftt) and Ft subsp. holarctica (Ftt) in humans and in more than 200 animal species including rabbits and hares. Human clinical manifestations depend on the route of infection and range from flu-like symptoms to severe pneumonia with a mortality rate up to 60% without treatment. So far, only 2D cell culture and animal models are used to study Francisella virulence, but the gained results are transferable to human infections only to a certain extent. Method: In this study, we firstly established an ex vivo human lung tissue infection model using different Francisella strains: Ftt Life Vaccine Strain (LVS), Ftt LVS ΔiglC, Ftt human clinical isolate A-660 and a German environmental Francisella species strain W12-1067 (F-W12). Human lung tissue was used to determine the colony forming units and to detect infected cell types by using spectral immunofluorescence and electron microscopy. Chemokine and cytokine levels were measured in culture supernatants. Results: Only LVS and A-660 were able to grow within the human lung explants, whereas LVS ΔiglC and F-W12 did not replicate. Using human lung tissue, we observed a greater increase of bacterial load per explant for patient isolate A-660 compared to LVS, whereas a similar replication of both strains was observed in cell culture models with human macrophages. Alveolar macrophages were mainly infected in human lung tissue, but Ftt was also sporadically detected within white blood cells. Although Ftt replicated within lung tissue, an overall low induction of pro-inflammatory cytokines and chemokines was observed. A-660-infected lung explants secreted slightly less of IL-1ß, MCP-1, IP-10 and IL-6 compared to Ftt LVS-infected explants, suggesting a more repressed immune response for patient isolate A-660. When LVS and A-660 were used for simultaneous co-infections, only the ex vivo model reflected the less virulent phenotype of LVS, as it was outcompeted by A-660. Conclusion: We successfully implemented an ex vivo infection model using human lung tissue for Francisella. The model delivers considerable advantages and is able to discriminate virulent Francisella from less- or non-virulent strains and can be used to investigate the role of specific virulence factors.


Assuntos
Francisella tularensis , Tularemia , Animais , Humanos , Coelhos , Camundongos , Francisella tularensis/genética , Tularemia/microbiologia , Citocinas/metabolismo , Pulmão/microbiologia , Quimiocinas/metabolismo , Vacinas Bacterianas , Camundongos Endogâmicos C57BL
2.
Int J Med Microbiol ; 313(4): 151583, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37331050

RESUMO

Francisella tularensis is the causative agent of tularemia, a zoonotic disease with a wide host range. F. tularensis ssp. holarctica (Fth) is of clinical relevance for European countries, including Germany. Whole genome sequencing methods, including canonical Single Nucleotide Polymorphism (canSNP) typing and whole genome SNP typing, have revealed that European Fth strains belong to a few monophyletic populations. The majority of German Fth isolates belong to two basal phylogenetic clades B.6 (biovar I) and B.12 (biovar II). Strains of B.6 and B.12 seem to differ in their pathogenicity, and it has been shown that strains of biovar II are resistant against erythromycin. In this study, we present data corroborating our previous data demonstrating that basal clade B.12 can be divided into clades B.71 and B.72. By applying phylogenetic whole genome analysis as well as proteome analysis, we could verify that strains of these two clades are distinct from one another. This was confirmed by measuring the intensity of backscatter light on bacteria grown in liquid media. Strains belonging to clades B.6, B.71 or B.72 showed clade-specific backscatter growth curves. Furthermore, we present the whole genome sequence of strain A-1341, as a reference genome of clade B.71, and whole proteomes comparison of Fth strains belonging to clades B.6, B.71 and B.72. Further research is necessary to investigate phenotypes and putative differences in pathogenicity of the investigated different clades of Fth to better understand the relationship between observed phenotypes, pathogenicity and distribution of Fth strains.


Assuntos
Francisella tularensis , Tularemia , Animais , Francisella tularensis/genética , Filogenia , Tularemia/microbiologia , Zoonoses/microbiologia , Fenótipo
3.
Viruses ; 13(2)2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672748

RESUMO

Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) including the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and the phage particles seem to be defective for infecting new bacterial cells. Nevertheless, recombinant KIRK DNA was able to integrate site-specifically into the genome of different Francisella species after DNA transformation.


Assuntos
Bacteriófagos/genética , Francisella/virologia , Myoviridae/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Genoma Viral , Myoviridae/classificação , Myoviridae/isolamento & purificação , Myoviridae/ultraestrutura , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética
4.
Microorganisms ; 8(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971773

RESUMO

Tularemia is a zoonotic disease caused by Francisella tularensis a small, pleomorphic, facultative intracellular bacterium. In Europe, infections in animals and humans are caused mainly by Francisella tularensis subspecies holarctica. Humans can be exposed to the pathogen directly and indirectly through contact with sick animals, carcasses, mosquitoes and ticks, environmental sources such as contaminated water or soil, and food. So far, F. tularensis subsp. holarctica is the only Francisella species known to cause tularemia in Germany. On the basis of surveillance data, outbreak investigations, and literature, we review herein the epidemiological situation-noteworthy clinical cases next to genetic diversity of F. tularensis subsp. holarctica strains isolated from patients. In the last 15 years, the yearly number of notified cases of tularemia has increased steadily in Germany, suggesting that the disease is re-emerging. By sequencing F. tularensis subsp. holarctica genomes, knowledge has been added to recent findings, completing the picture of genotypic diversity and geographical segregation of Francisella clades in Germany. Here, we also shortly summarize the current knowledge about a new Francisella species (Francisella sp. strain W12-1067) that has been recently identified in Germany. This species is the second Francisella species discovered in Germany.

5.
Int J Med Microbiol ; 310(4): 151426, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32444321

RESUMO

Recently, a new environmental Francisella strain, Francisella sp. strain W12-1067, has been identified in Germany. This strain is negative for the Francisella pathogenicity island (FPI) but exhibits a putative alternative type VI secretion system. Some known virulence factors of Francisella are present, but the pathogenic capacity of this species is not known yet. In silico genome analysis reveals the presence of a gene cluster tentatively enabling myo-inositol (MI) utilization via a putative inositol oxygenase. Labelling experiments starting from 2H-inositol demonstrate that this gene cluster is indeed involved in the metabolism of MI. We further show that, under in vitro conditions, supply of MI increases growth rates of strain W12-1067 in the absence of glucose and that the metabolism of MI is strongly reduced in a W12-1067 mutant lacking the MI gene cluster. The positive growth effect of MI in the absence of glucose is restored in this mutant strain by introducing the complete MI gene cluster. F. novicida Fx1 is also positive for the MI metabolizing gene cluster and MI again increases growth in a glucose-free medium, in contrast to F. novicida strain U112, which is shown to be a natural mutant of the MI metabolizing gene cluster. Labelling experiments of Francisella sp. strain W12-1067 in medium T containing 13C-glucose, 13C-serine or 13C-glycerol as tracers suggest a bipartite metabolism where glucose is mainly metabolized through glycolysis, but not through the Entner-Doudoroff pathway or the pentose phosphate pathway. Carbon flux from 13C-glycerol and 13C-serine is less active, and label from these tracers is transferred mostly into amino acids, lactate and fatty acids. Together, the metabolism of Francisella sp. strain W12-1067 seems to be more related to the respective one in F. novicida rather than in F. tularensis subsp. holarctica.


Assuntos
Carbono/metabolismo , Francisella/genética , Francisella/metabolismo , Inositol/metabolismo , Família Multigênica , Aminoácidos/metabolismo , Simulação por Computador , Francisella/patogenicidade , Genoma Bacteriano , Ilhas Genômicas , Glucose/metabolismo , Inositol Oxigenase/metabolismo , Microbiologia da Água
6.
Artigo em Inglês | MEDLINE | ID: mdl-31781515

RESUMO

Francisella tularensis is an intracellular pleomorphic bacterium and the causative agent of tularemia, a zoonotic disease with a wide host range. Among the F. tularensis subspecies, especially F. tularensis subsp. holarctica is of clinical relevance for European countries. The study presented herein focuses namely on genetic diversity and spatial segregation of F. tularensis subsp. holarctica in Germany, as still limited information is available. The investigation is based on the analysis of 34 F. tularensis subsp. holarctica isolates and one draft genome from an outbreak strain. The isolates were cultured from sample material being that of primarily human patients (n = 25) and free-living animals (n = 9). For six of 25 human isolates, epidemiological links between disease onset and tick bites could be established, confirming the importance of arthropod linked transmission of tularemia in Germany. The strains were assigned to three of four major F. tularensis subsp. holarctica clades: B.4, B.6, and B.12. Thereby, B.6 and B.12 clade members were predominantly found; only one human isolate was assigned to clade B.4. Also, it turned out that eight isolates which caused pneumonia in patients clustered into the B.6 clade. Altogether, eight different final subclades were assigned to clade B.6 (biovar I, erythromycin sensitive) and six to B.12 (biovar II, erythromycin resistant) in addition to one new final B.12 subclade. Moreover, for 13 human and 3 animal isolates, final subclade subdivisions were not assigned (B.12 subdivisions B.33 and B.34, and B.6 subdivision B.45) because official nomenclatures are not available yet. This gives credit to the genetic variability of F. tularensis subsp. holarctica strains in Germany. The results clearly point out that the given genetic diversity in Germany seems to be comparably high to that found in other European countries including Scandinavian regions. A spatial segregation of B.6 and B.12 strains was found and statistically confirmed, and B.12 clade members were predominantly found in eastern parts and B.6 members more in western to southern parts of Germany. The portion of B.12 clade members in northeastern parts of Germany was 78.5% and in southwestern parts 1.9%.


Assuntos
Francisella tularensis/classificação , Francisella tularensis/genética , Variação Genética , Tularemia/epidemiologia , Tularemia/microbiologia , Animais , Antibacterianos/farmacologia , Francisella tularensis/efeitos dos fármacos , Genótipo , Alemanha/epidemiologia , Humanos , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise Espacial , Zoonoses/epidemiologia , Zoonoses/microbiologia
7.
Int J Med Microbiol ; 309(6): 151341, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31451389

RESUMO

Francisella tularensis is the causative agent of the human disease referred to as tularemia. Other Francisella species are known but less is understood about their virulence factors. The role of environmental amoebae in the life-cycle of Francisella is still under discussion. Francisella sp. strain W12-1067 (F-W12) is an environmental Francisella isolate recently identified in Germany which is negative for the Francisella pathogenicity island, but exhibits a putative alternative type VI secretion system. Putative virulence factors have been identified in silico in the genome of F-W12. In this work, we established a "scatter screen", used earlier for pathogenic Legionella, to verify experimentally and identify candidate fitness factors using a transposon mutant bank of F-W12 and Acanthamoeba lenticulata as host organism. In these experiments, we identified 79 scatter clones (amoeba sensitive), which were further analyzed by an infection assay identifying 9 known virulence factors, but also candidate fitness factors of F-W12 not yet described as fitness factors in Francisella. The majority of the identified genes encoded proteins involved in the synthesis or maintenance of the cell envelope (LPS, outer membrane, capsule) or in the metabolism (glycolysis, gluconeogenesis, pentose phosphate pathway). Further 13C-flux analysis of the Tn5 glucokinase mutant strain revealed that the identified gene indeed encodes the sole active glucokinase in F-W12. In conclusion, candidate fitness factors of the new Francisella species F-W12 were identified using the scatter screen method which might also be usable for other Francisella species.


Assuntos
Acanthamoeba/microbiologia , Proteínas de Bactérias/genética , Francisella/fisiologia , Francisella/patogenicidade , Fatores de Virulência/genética , Elementos de DNA Transponíveis , Francisella/genética , Francisella/crescimento & desenvolvimento , Glucoquinase/genética , Interações Hospedeiro-Patógeno , Viabilidade Microbiana , Mutagênese Insercional , Mutação
8.
Euro Surveill ; 24(18)2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31064636

RESUMO

BackgroundIn 2016, an uncommon outbreak of oropharyngeal tularaemia involving six human cases occurred in Germany, caused by drinking contaminated fresh must after a grape harvest.AimWe describe the details of laboratory investigations leading to identification of the outbreak strain, its characterisation by next generation sequencing (NGS) and the finding of the possible source of contamination.MethodsWe incubated wine samples in different media and on agar plates. NGS was performed on DNA isolated from young wine, sweet reserve and an outbreak case's lymph node. A draft genome of the outbreak strain was generated. Vertebrate-specific PCRs using primers targeting the mitochondrial cytochrome b gene and product analyses by blast search were used to identify the putative source of must contamination.ResultsNo bacterial isolate could be obtained. Analysis of the draft genome sequence obtained from the sweet reserve attributed this sequence to Francisella tularensis subsp. holarctica, belonging to the B.12/B.34 phylogenetic clade (erythromycin-resistant biovar II). In addition, the DNA sequence obtained from the case's isolate supported our hypothesis that infection was caused by drinking contaminated must. The vertebrate-specific cytochrome b sequence derived from the young wine and the sweet reserve could be assigned to Apodemus sylvaticus (wood mouse), suggesting that a wood mouse infected with F. tularensis may have contaminated the must.ConclusionThe discovered source of infection and the transmission scenario of F. tularensis in this outbreak have not been observed previously and suggest the need for additional hygienic precautionary measures when processing and consuming freshly pressed must.


Assuntos
Surtos de Doenças , Francisella tularensis/genética , Murinae/microbiologia , Tularemia/epidemiologia , Tularemia/microbiologia , Vinho/microbiologia , Animais , Sequência de Bases , Citocromos b/genética , Francisella tularensis/isolamento & purificação , Alemanha/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Murinae/genética , Filogenia , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA , Vitis/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-29594068

RESUMO

We recently identified and described a putative prophage on the genomic island FhaGI-1 located within the genome of Francisella hispaniensis AS02-814 (F. tularensis subsp. novicida-like 3523). In this study, we constructed two variants of a Francisella phage integration vector, called pFIV1-Val and pFIV2-Val (Francisella Integration Vector-tRNAVal-specific), using the attL/R-sites and the site-specific integrase (FN3523_1033) of FhaGI-1, a chloramphenicol resistance cassette and a sacB gene for counter selection of transformants against the vector backbone. We inserted the respective sites and genes into vector pUC57-Kana to allow for propagation in Escherichia coli. The constructs generated a circular episomal form in E. coli which could be used to transform Francisella spp. where FIV-Val stably integrated site specifically into the tRNAVal gene of the genome, whereas pUC57-Kana is lost due to counter selection. Functionality of the new vector was demonstrated by the successfully complementation of a Francisella mutant strain. The vectors were stable in vitro and during host-cell infection without selective pressure. Thus, the vectors can be applied as a further genetic tool in Francisella research, expanding the present genetic tools by an integrative element. This new element is suitable to perform long-term experiments with different Francisella species.


Assuntos
Bacteriófagos/genética , Francisella/genética , Vetores Genéticos , Ilhas Genômicas , Plasmídeos , Transformação Bacteriana , Resistência ao Cloranfenicol/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Francisella/crescimento & desenvolvimento , Francisella/virologia , Francisella tularensis/genética , Humanos , Integrases/genética , Mutação , RNA de Transferência de Valina/genética , Recombinação Genética , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...