Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 121(13): 137201, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312069

RESUMO

In optics, a light beam experiences a spatial shift in the beam plane upon total internal reflection. This shift is usually referred to as the Goos-Hänchen shift. When dealing with plane waves, it manifests itself as a phase shift between an incoming and reflected wave that depends on the wave vector component along the interface. In the experiments presented here, plane spin waves are excited in a 60-nm-thick Permalloy film and propagate towards the edge of the film. By means of time-resolved scanning Kerr microscopy, we are able to directly detect a phase shift between the incoming and reflected wave. With the help of a numerical model, we show that this phase shift naturally occurs for spin waves in the dipolar regime.

2.
Phys Rev Lett ; 118(25): 257201, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696748

RESUMO

We report the experimental observation of spin-orbit torque induced switching of perpendicularly magnetized Pt/Co elements in a time resolved stroboscopic experiment based on high resolution Kerr microscopy. Magnetization dynamics is induced by injecting subnanosecond current pulses into the bilayer while simultaneously applying static in-plane magnetic bias fields. Highly reproducible homogeneous switching on time scales of several tens of nanoseconds is observed. Our findings can be corroborated using micromagnetic modeling only when including a fieldlike torque term as well as the Dzyaloshinskii-Moriya interaction mediated by finite temperature.

3.
Phys Rev Lett ; 117(3): 037204, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27472134

RESUMO

We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.

4.
J Phys Condens Matter ; 25(17): 176004, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23567900

RESUMO

We study the effect of magnetocrystalline anisotropy on the magnetic configurations of La0.7Sr0.3MnO3 bar and triangle elements using photoemission electron microscopy imaging. The dominant remanent state is a low energy flux-closure state for both thin (15 nm) and thick (50 nm) elements. The magnetocrystalline anisotropy, which competes with the dipolar energy, causes a strong modification of the spin configuration in the thin elements, depending on the shape, size and orientation of the structures. We investigate the magnetic switching processes and observe in triangular shaped elements a displacement of the vortex core along the easy axis for an external magnetic field applied close to the hard axis, which is well reproduced by micromagnetic simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...