Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 102(9): 7826-7837, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31301847

RESUMO

One approach to avoid production of acid whey during the manufacture of high-protein yogurt and related products is to concentrate the milk before fermentation. However, the resultant gels are firm so that stirring in the tank and further processing are difficult on an industrial scale. We hypothesize that power ultrasound (US) during fermentation softens the gel because sound waves cause cavitation and strong shear forces in the fluid. Skim milk was standardized to different protein contents up to 12%, heated (85°C, 30 min), and acidified with thermophilic or mesophilic starter cultures. An excessive increase in gel firmness as a function of protein content was detected. In the next series of experiments, US was applied during fermentation. Milks (10% protein) were acidified at 43.5°C and sonicated from pH 5.8 to 5.1 with a sonotrode (20 kHz, 20 W). Immediately after fermentation, gels were agitated using a rheometer with a vane geometry. The maximum torque required to break the gel was reduced by 75% following US, and gel firmness was reduced by 80%. Gels were then processed into stirred yogurt and analyzed. Sonicated samples were smoother with fewer large aggregates. Confocal laser scanning microscopy images suggested a less cohesive structure and more compact microgel particles, resulting in reduced viscosity. We concluded that US is a promising tool to weaken the gel and facilitate further processing. This enables new approaches for the manufacture of Greek yogurt, particularly in regard to avoiding production of acid whey and developing products with novel textures.


Assuntos
Géis/química , Proteínas do Leite/química , Ultrassom/métodos , Iogurte/análise , Animais , Fermentação , Temperatura Alta , Concentração de Íons de Hidrogênio , Leite/química , Reologia , Viscosidade , Proteínas do Soro do Leite/análise
2.
J Dairy Sci ; 101(5): 3866-3877, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29477530

RESUMO

Machinery such as pumps used for the commercial production of fermented milk products cause vibrations that can spread to the fermentation tanks. During fermentation, such vibrations can disturb the gelation of milk proteins by causing texture defects including lumpiness and syneresis. To study the effect of vibrations on yogurt structure systematically, an experimental setup was developed consisting of a vibration exciter to generate defined vibrational states and accelerometers for monitoring. During the fermentation of skim milk, vibrations (frequency sweep: 25 to 1,005 Hz) were introduced at different pH (5.7 to 5.1, step width 0.1 units) for 200 s. Physical properties of set gels (syneresis, firmness) and resultant stirred yogurts (visible particles, rheology, laser diffraction) were analyzed. Vibrational treatments at pH 5.5 to 5.2 increased syneresis, gel firmness, and the number of large particles (d > 0.9 mm); hence, this period was considered critical. The particle number increased from 34 ± 5 to 242 ± 16 particles per 100 g of yogurt due to vibrations at pH 5.4. In further experiments, yogurts were excited with fixed frequencies (30, 300, and 1,000 Hz). All treatments increased syneresis, firmness, and particle formation. As the strongest effect was observed by applying 30 Hz, the amplitude was set to vibration accelerations of a = 5, 10, 15, 20, and 25 m/s2 in the final experiments. The number of large particles was increased due to each treatment and a positive correlation with the amplitude was found. We concluded that vibrations during gelation increase the collision probability of aggregating milk proteins, resulting in a compressed set gel with syneresis. Resultant stirred yogurts exhibit large particles with a compact structure leading to a reduced water-holding capacity and product viscosity.


Assuntos
Manipulação de Alimentos/instrumentação , Leite/química , Iogurte/análise , Animais , Fermentação , Manipulação de Alimentos/métodos , Concentração de Íons de Hidrogênio , Proteínas do Leite/química , Reologia , Vibração , Viscosidade
3.
Food Res Int ; 97: 170-177, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28578038

RESUMO

Two major quality defects of yogurt are syneresis and the presence of large particles, and several reasons have been extensively discussed. Vibrations during fermentation, particularly generated by pumps, must be considered as a further cause as latest research showed that both ultrasound and low frequencies induced visible particles. The aim of this study was to investigate the impact of sonication during fermentation with starter cultures differing in exopolysaccharide (EPS) synthesis on the physical properties of set (syneresis, firmness) and stirred yogurt (large particles, laser diffraction, rheology). Skim milk was fermented with starter cultures YC-471 (low EPS) or YF-L 901 (high EPS) (Chr. Hansen) and sonicated for 5min at pH5.2. Sonicated set gels exhibited syneresis and were softer than respective controls. The mechanical treatment was adjusted to quantify visible particles (d≥0.9mm) in stirred yogurts properly. Sonication significantly increased particle numbers, however, the effect was less pronounced when YF-L 901 was used, indicating EPS as a tool to reduce syneresis and particle formation due to vibrations. Rheological parameters and size of microgel particles were rather influenced by starter cultures than by sonication.


Assuntos
Fermentação , Polissacarídeos Bacterianos/química , Sonicação , Iogurte , Tecnologia de Alimentos , Tamanho da Partícula , Iogurte/microbiologia , Iogurte/efeitos da radiação
4.
Food Res Int ; 85: 44-50, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29544851

RESUMO

The aim of the study was to investigate the effects of vibrations during yogurt fermentation. Machinery such as pumps and switching valves generate vibrations that may disturb the gelation by inducing large particles. Oscillation measurements on an industrial yogurt production line showed that oscillations are transferred from pumps right up to the fermentation tanks. An experimental setup (20L) was developed to study the effect of vibrations systematically. The fermenters were decoupled with air springs to enable reference fermentations under idle conditions. A vibration exciter was used to stimulate the fermenters. Frequency sweeps (25-1005Hz, periodic time 10s) for 20min from pH5.4 induced large particles. The number of visible particles was significantly increased from 35±4 (reference) to 89±9 particles per 100g yogurt. Rheological parameters of the stirred yogurt samples were not influenced by vibrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...