Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(10): 5282-5297, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37854560

RESUMO

Optical coherence tomography (OCT) is conventionally used for structural imaging of tissue. Calibrating the intensity values of OCT images can give information on the tissue's inherent optical properties, such as the attenuation coefficient, which can provide an additional parameter to quantify possible pathological changes. To obtain calibrated intensity values, the focus position and Rayleigh length of the incident beam need to be known. We explore the feasibility of extracting the focus position from an OCT scan acquired with a single focus setting using the chromatic aberration of the system. The chromatic focal shift of an OCT system is exploited to achieve different focus positions for sub-spectrum reconstructed OCT images. The ratios of these images are used to estimate the focus position. Reconstruction of a high-resolution B-scan from coherent addition of sub-spectrum confocal function corrected B-scans and subsequent high-resolution OCT attenuation coefficient imaging is demonstrated. Furthermore, we introduce a method to experimentally determine the chromatic focal shifts of an OCT system in phantoms and an in vivo human retina. These shifts are compared to the theoretically expected shifts calculated with ray tracing.

2.
Transl Vis Sci Technol ; 11(1): 28, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35044444

RESUMO

Purpose: The lateral resolution of an optical coherence tomography (OCT) instrument was considered to be equal to the illumination spot size on the retina. To evaluate the potential lateral resolution of the Spectralis OCT, an instrument calculated to have a 14 µm resolution. Methods: The lateral point spread function (PSF) was evaluated using diamond abrasive powder 0 to 1 µm in diameter in silicone elastomer and a validated target with 800 nm FeO particles in urethane. The amplitude transfer function was calculated from human OCT images. Finally, resolution was measured using the 1951 USAF target. Results: Measurement of the lateral PSF from 1215 diamond particle images yielded a full-width half maximum (FWHM) to be 5.11 µm and for 732 FeO particles, 4.9 µm. From the amplitude transfer function, the FWHM of the diffraction limited PSF was calculated to be 5.0 µm. The USAF target imaging showed a lateral resolution of 4.6 µm. Conclusions: Although a calculation of the spot size of the illumination beam was reported in the past as the lateral resolution of the OCT instrument, the actual lateral resolution is better by a factor of at least 2.5 times. The clinically used A-scan spacing was derived from the calculated, and not the true resolution, and results in under sampling. This set of findings likely apply to all commercial clinical instruments. Translational Relevance: The scan density parameters of past and present commercial OCT instruments were based on earlier translational concepts, which now appear to have been incorrect.


Assuntos
Retina , Tomografia de Coerência Óptica , Humanos
3.
Biomed Opt Express ; 12(11): 6814-6830, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34858682

RESUMO

The attenuation coefficient provides a quantitative parameter for tissue characterization and can be calculated from optical coherence tomography (OCT) data, but accurate determination requires compensation for the confocal function. We present extensive measurement series for extraction of the focal plane and the apparent Rayleigh length from the ratios of OCT images acquired with different focus depths and compare these results with two alternative approaches. By acquiring OCT images for a range of different focus depths the optimal focus plane difference is determined for intralipid and titanium oxide (TiO2) phantoms with different scatterer concentrations, which allows for calculation of the attenuation coefficient corrected for the confocal function. The attenuation coefficient is determined for homogeneous intralipid and TiO2 samples over a wide range of concentrations. We further demonstrate very good reproducibility of the determined attenuation coefficient of layers with identical scatter concentrations in a multi-layered phantom. Finally, this method is applied to in vivo retinal data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...