Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 24(1): e40-e54, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28715112

RESUMO

A 2-year Free Air CO2 Enrichment (FACE) experiment was conducted with winter wheat. It was investigated whether elevated atmospheric CO2 concentration (e[CO2 ]) inhibit nitrate assimilation and whether better growth and nitrogen acquisition under e[CO2 ] can be achieved with an ammonium-based fertilization as it was observed in hydroponic culture with wheat. Under e[CO2 ] a decrease in nitrate assimilation has been discussed as the cause for observed declines in protein concentration in C3 cereals. Wheat was grown under ambient [CO2 ] and e[CO2 ] (600 ppm) with three levels (deficiency, optimal, and excessive) of nitrate-based fertilization (calcium ammonium nitrate; CAN) or with optimal ammonium-based fertilization. Ammonium fertilization was applied via injection of an ammonium solution into the soil in the 1st year and by surface application of urea combined with nitrification inhibitors (UNI) in the 2nd year. Results showed that ammonium-based fertilization was successfully achieved in the 2nd year with respect to nitrification control, as soil ammonium concentration was considerably higher over the growing season for UNI fertilized plots compared to optimal CAN plots. Also, stem nitrate concentration, flag leaf nitrate reductase activity, and transcript levels were lower in UNI fertilized plants compared to optimal CAN. Regarding the e[CO2 ] effect on nitrate reductase activity and transcript levels, no alteration could be observed for any nitrogen fertilizer treatment. Flag leaf growth was stimulated under e[CO2 ] leading to an enhanced nitrate reductase activity referred to m2 ground area at late flowering being in line with a higher nitrogen acquisition under e[CO2 ]. Moreover, nitrogen acquisition was considerably higher in nitrate fertilized plants compared to ammonium fertilized plants under e[CO2 ]. Our results obtained under field conditions show that a change from nitrate- to ammonium-based fertilization will not lead to a better growth and nitrogen acquisition of winter wheat under future e[CO2 ].


Assuntos
Compostos de Amônio/administração & dosagem , Dióxido de Carbono/administração & dosagem , Nitratos/administração & dosagem , Nitrogênio/metabolismo , Compostos de Amônio Quaternário/administração & dosagem , Triticum/fisiologia , Compostos de Amônio/metabolismo , Dióxido de Carbono/metabolismo , Fertilizantes , Nitratos/metabolismo , Óxidos de Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Compostos de Amônio Quaternário/metabolismo , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
2.
J Environ Qual ; 42(1): 199-207, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673755

RESUMO

Hydrochars, technically manufactured by hydrothermal carbonization (HTC) of biomass residues, are recently tested in high numbers for their suitability as feedstock for bioenergy production, the bioproduct industry, and as long-term carbon storage in soil, but ecological effects in the soil-plant system are not sufficiently known. Therefore, we investigated the influence of different biomass residues and process duration on the molecular composition of hydrochars, and how hydrochar addition to soils affected the germination of spring barley ( L.) seeds. Samples from biomass residues and the corresponding hydrochars were analyzed by pyrolysis-field ionization mass spectrometry (Py-FIMS) and gaseous emissions from the germination experiments with different soil-hydrochar mixtures by gas chromatography/mass spectrometry (GC/MS). The molecular-level characterization of various hydrochars by Py-FIMS clearly showed that the kind of biomass residue influenced the chemical composition of the corresponding hydrochars more strongly than the process duration. In addition to various detected possible toxic substances, two independent mass spectrometric methods (Py-FIMS and GC/MS) indicated long C-chain aliphatic compounds which are typically degraded to the C-unit ethylene that can evoke phytotoxic effects in high concentrations. This showed for the first time possible chemical compounds to explain toxic effects of hydrochars on plant growth. It is concluded that the HTC process did not result in a consistent product with defined chemical composition. Furthermore, possible toxic effects urgently need to be investigated for each individual hydrochar to assess effects on the soil organic matter composition and the soil biota before hydrochar applications as an amendment on agricultural soils.


Assuntos
Carbono , Solo , Biomassa , Carbono/química , Carvão Vegetal/química , Espectrometria de Massas , Solo/química , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...