Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(3): e0330423, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315027

RESUMO

Olorofim, the first member of the novel class of antifungal drugs, the orotomides, shows promising anti-Aspergillus activity and is currently in phase III clinical development. Using high-throughput microscopy, we monitored olorofim's antifungal potential at sub-minimum inhibitory concentration (MIC) levels with a focus on early-stage growth. Unlike voriconazole, olorofim showed significant growth inhibitory activities against three main pathogenic Aspergillus species, Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger, at concentrations >100,000-fold below its MIC. IMPORTANCE: Among antifungal compounds in clinical development for systemic disease, the orotomide olorofim is one of only two that target a completely new mechanism of action. Olorofim is highly potent against pathogenic Aspergillus species including cryptic species that frequently show increased resistance to current agents. In this study, our primary focus was on evaluating in detail the inhibitory activity of voriconazole and olorofim against different pathogenic Aspergillus species employing high-throughput microscopy. Compared to standardized, less-sensitive visual assessment-based methods, microscopy-assisted growth monitoring allowed us to detect sub-MIC drug concentration ranges with significant inhibitory activity at early-stage growth. This revealed that olorofim exerts growth inhibition at concentrations that are several magnitudes below those of voriconazole.


Assuntos
Acetamidas , Antifúngicos , Aspergillus niger , Piperazinas , Pirimidinas , Pirróis , Antifúngicos/farmacologia , Voriconazol/farmacologia , Testes de Sensibilidade Microbiana
2.
Antimicrob Agents Chemother ; 67(11): e0091823, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815358

RESUMO

Azole antifungals remain the "gold standard" therapy for invasive aspergillosis. The world-wide emergence of isolates resistant to this drug class, however, developed into a steadily increasing threat to human health over the past years. In Aspergillus fumigatus, major mechanisms of resistance involve increased expression of cyp51A encoding one of two isoenzymes targeted by azoles. Yet, the level of resistance caused by cyp51A upregulation, driven by either clinically relevant tandem repeat mutations within its promoter or the use of high expressing heterologous promoters, is limited. Cytochrome P450 enzymes such as Cyp51A rely on redox partners that provide electrons for their activity. A. fumigatus harbors several genes encoding putative candidate proteins including two paralogous cytochrome P450 reductases, CprA and CprB, and the cytochrome b 5 CybE. In this work, we investigated the contribution of each cprA, cprB, and cybE overexpression to cyp51A-mediated resistance to different medical and agricultural azoles. Using the bidirectional promoter PxylP, we conditionally expressed these genes in combination with cyp51A, revealing cprA as the main limiting factor. Similar to this approach, we overexpressed cprA in an azole-resistant background strain carrying a cyp51A allele with TR34 in its promoter, which led to a further increase in its resistance. Employing sterol measurements, we demonstrate an enhanced eburicol turnover during upregulation of either cprA or cyp51A, which was even more pronounced during their simultaneous overexpression. In summary, our work suggests that mutations leading to increased Cyp51A activity through increased electron supply could be key factors that elevate azole resistance.


Assuntos
Aspergillus fumigatus , Azóis , Humanos , Azóis/farmacologia , Azóis/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Testes de Sensibilidade Microbiana
3.
PLoS Pathog ; 18(12): e1011066, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574449

RESUMO

Invasive aspergillosis remains one of the most devastating fungal diseases and is predominantly linked to infections caused by the opportunistic human mold pathogen Aspergillus fumigatus. Major treatment regimens for the disease comprise the administration of antifungals belonging to the azole, polyene and echinocandin drug class. The prodrug 5-fluorocytosine (5FC), which is the only representative of a fourth class, the nucleobase analogs, shows unsatisfactory in vitro activities and is barely used for the treatment of aspergillosis. The main route of 5FC activation in A. fumigatus comprises its deamination into 5-fluorouracil (5FU) by FcyA, which is followed by Uprt-mediated 5FU phosphoribosylation into 5-fluorouridine monophosphate (5FUMP). In this study, we characterized and examined the role of a metabolic bypass that generates this nucleotide via 5-fluorouridine (5FUR) through uridine phosphorylase and uridine kinase activities. Resistance profiling of mutants lacking distinct pyrimidine salvage activities suggested a minor contribution of the alternative route in 5FUMP formation. We further analyzed the contribution of drug efflux in 5FC tolerance and found that A. fumigatus cells exposed to 5FC reduce intracellular fluoropyrimidine levels through their export into the environment. This release, which was particularly high in mutants lacking Uprt, generates a toxic environment for cytosine deaminase lacking mutants as well as mammalian cells. Employing the broad-spectrum fungal efflux pump inhibitor clorgyline, we demonstrate synergistic properties of this compound in combination with 5FC, 5FU as well as 5FUR.


Assuntos
Antineoplásicos , Aspergilose , Animais , Humanos , Flucitosina/farmacologia , Flucitosina/metabolismo , Flucitosina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antineoplásicos/farmacologia , Antimetabólitos , Fluoruracila/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/metabolismo , Farmacorresistência Fúngica , Mamíferos
4.
Microbiol Spectr ; 10(6): e0367022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36350143

RESUMO

Inducible promoters are indispensable elements when considering the possibility to modulate gene expression on demand. Desirable traits of conditional expression systems include their capacity for tight downregulation, high overexpression, and in some instances for fine-tuning, to achieve a desired product's stoichiometry. Although the number of inducible systems is slowly increasing, suitable promoters comprising these features are rare. To date, the concomitant use of multiple regulatable promoter platforms for controlled multigene expression has been poorly explored. This work provides pioneer work in the human pathogenic fungus Aspergillus fumigatus, wherein we investigated different inducible systems, elucidated three candidate promoters, and proved for the first time that up to three systems can be used simultaneously without interfering with each other. Proof of concept was obtained by conditionally expressing three antifungal drug targets within the ergosterol biosynthetic pathway under the control of the xylose-inducible PxylP system, the tetracycline-dependent Tet-On system, and the thiamine-repressible PthiA system. IMPORTANCE In recent years, inducible promoters have gained increasing interest for industrial or laboratory use and have become key instruments for protein expression, synthetic biology, and metabolic engineering. Constitutive, high-expressing promoters can be used to achieve high expression yields; however, the continuous overexpression of specific proteins can lead to an unpredictable metabolic burden. To prevent undesirable effects on the expression host's metabolism, the utilization of tunable systems that allow expression of a gene product on demand is indispensable. Here, we elucidated several excellent tunable promoter systems and verified that each can be independently induced in a single strain to ultimately develop a unique conditional multigene expression system. This highly efficient, modular toolbox has the potential to significantly advance applications in fundamental as well as applied research in which regulatable expression of several genes is a key requirement.


Assuntos
Fungos , Tetraciclina , Humanos , Regiões Promotoras Genéticas , Tetraciclina/farmacologia , Antibacterianos , Antifúngicos
5.
Microbiol Spectr ; 10(3): e0120922, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35575535

RESUMO

Aspergillus fumigatus is one of the deadliest fungal species, causing hundreds of thousands of deaths each year. Because azoles provide the preferred first-line option for treatment of aspergillosis, the increase in rates of resistance and the poor therapeutic outcomes for patients infected with a resistant isolate constitute a serious global health threat. Azole resistance is frequently associated with specific tandem repeat duplications of a promoter element upstream of cyp51A, the gene that encodes the target for this drug class in A. fumigatus. This promoter element is recognized by the activating transcription factors SrbA and AtrR. This region also provides a docking platform for the CCAAT-binding complex (CBC) and HapX, which cooperate in the regulation of genes involved in iron-consuming pathways, including cyp51A. Here, we studied the regulatory contributions of SrbA, AtrR, CBC, and HapX binding sites to cyp51A expression and azole resistance under different iron availability employing promoter mutational analysis and protein-DNA interaction analysis. This strategy revealed iron status-dependent and -independent roles of these regulatory elements. We show that promoter occupation by both AtrR and SrbA is required for iron-independent steady-state transcriptional activation of cyp51A and its induction during short-term iron exposure relies on HapX binding. We further reveal the HapX binding site as a repressor element, disruption of which increases cyp51A expression and azole resistance regardless of iron availability. IMPORTANCE First-line treatment of aspergillosis typically involves the use of azole antifungals. Worryingly, their future clinical use is challenged by an alarming increase in resistance. Therapeutic outcomes for such patients are poor due to delays in switching to alternative treatments and reduced efficacy of salvage therapeutics. Our lack of understanding of the molecular mechanisms that underpin resistance hampers our ability to develop novel therapeutic interventions. In this work, we dissect the regulatory motifs associated with azole resistance in the promoter of the gene that encodes the azole drug target Cyp51A. These motifs include binding platforms for SrbA and AtrR, as well as the CCAAT-binding complex and HapX. Employing mutational analyses, we uncovered crucial cyp51A-activating and -repressing functions of the binding sites. Remarkably, disrupting binding of the iron regulator HapX increased cyp51A expression and azole resistance in an iron-independent manner.


Assuntos
Aspergilose , Aspergillus fumigatus , Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/genética , Azóis/metabolismo , Azóis/farmacologia , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/metabolismo , Humanos , Ferro/metabolismo , Testes de Sensibilidade Microbiana
6.
J Fungi (Basel) ; 7(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356941

RESUMO

Invasive pulmonary aspergillosis (IPA) is a life-threatening form of fungal infection, primarily in immunocompromised patients and associated with significant mortality. Diagnostic procedures are often invasive and/or time consuming and existing antifungals can be constrained by dose-limiting toxicity and drug interaction. In this study, we modified triacetylfusarinine C (TAFC), the main siderophore produced by the opportunistic pathogen Aspergillus fumigatus (A. fumigatus), with antifungal molecules to perform antifungal susceptibility tests and molecular imaging. A variation of small organic molecules (eflornithine, fludioxonil, thiomersal, fluoroorotic acid (FOA), cyanine 5 (Cy5) with antifungal activity were coupled to diacetylfusarinine C (DAFC), resulting in a "Trojan horse" to deliver antifungal compounds specifically into A. fumigatus hyphae by the major facilitator transporter MirB. Radioactive labeling with gallium-68 allowed us to perform in vitro characterization (distribution coefficient, stability, uptake assay) as well as biodistribution experiments and PET/CT imaging in an IPA rat infection model. Compounds chelated with stable gallium were used for antifungal susceptibility tests. [Ga]DAFC-fludioxonil, -FOA, and -Cy5 revealed a MirB-dependent active uptake with fungal growth inhibition at 16 µg/mL after 24 h. Visualization of an A. fumigatus infection in lungs of a rat was possible with gallium-68-labeled compounds using PET/CT. Heterogeneous biodistribution patterns revealed the immense influence of the antifungal moiety conjugated to DAFC. Overall, novel antifungal siderophore conjugates with promising fungal growth inhibition and the possibility to perform PET imaging combine both therapeutic and diagnostic potential in a theranostic compound for IPA caused by A. fumigatus.

7.
J Fungi (Basel) ; 7(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202756

RESUMO

The hygromycin B phosphotransferase gene from Escherichia coli and the pyrithiamine resistance gene from Aspergillus oryzae are two dominant selectable marker genes widely used to genetically manipulate several fungal species. Despite the recent development of CRISPR/Cas9 and marker-free systems, in vitro molecular tools to study Aspergillus fumigatus, which is a saprophytic fungus causing life-threatening diseases in immunocompromised hosts, still rely extensively on the use of dominant selectable markers. The limited number of drug selectable markers is already a critical aspect, but the possibility that their introduction into a microorganism could induce enhanced virulence or undesired effects on metabolic behavior constitutes another problem. In this context, here, we demonstrate that the use of ptrA in A. fumigatus leads to the secretion of a compound that allows the recovery of thiamine auxotrophy. In this study, we developed a simple modification of the two commonly used dominant markers in which the development of resistance can be controlled by the xylose-inducible promoter PxylP from Penicillium chrysogenum. This strategy provides an easy solution to avoid undesired side effects, since the marker expression can be readily silenced when not required.

8.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504082

RESUMO

The genome of Penicillium chrysogenum Q176 contains a gene coding for the 88-amino-acid (aa)-long glycine- and cysteine-rich P. chrysogenum antifungal protein C (PAFC). After maturation, the secreted antifungal miniprotein (MP) comprises 64 aa and shares 80% aa identity with the bubble protein (BP) from Penicillium brevicompactum, which has a published X-ray structure. Our team expressed isotope (15N, 13C)-labeled, recombinant PAFC in high yields, which allowed us to determine the solution structure and molecular dynamics by nuclear magnetic resonance (NMR) experiments. The primary structure of PAFC is dominated by 14 glycines, and therefore, whether the four disulfide bonds can stabilize the fold is challenging. Indeed, unlike the few published solution structures of other antifungal MPs from filamentous ascomycetes, the NMR data indicate that PAFC has shorter secondary structure elements and lacks the typical ß-barrel structure, though it has a positively charged cavity and a hydrophobic core around the disulfide bonds. Some parts within the two putative γ-core motifs exhibited enhanced dynamics according to a new disorder index presentation of 15N-NMR relaxation data. Furthermore, we also provided a more detailed insight into the antifungal spectrum of PAFC, with specific emphasis on fungal plant pathogens. Our results suggest that PAFC could be an effective candidate for the development of new antifungal strategies in agriculture.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Conformação Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Motivos de Aminoácidos , Sequência de Aminoácidos , Testes de Sensibilidade Microbiana , Penicillium , Penicillium chrysogenum , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Estrutura Secundária de Proteína , Termodinâmica
9.
J Fungi (Basel) ; 6(3)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824977

RESUMO

Small, cysteine-rich and cationic antimicrobial proteins (AMPs) from filamentous ascomycetes promise treatment alternatives to licensed antifungal drugs. In this study, we characterized the Penicillium chrysogenum Q176 antifungal protein C (PAFC), which is phylogenetically distinct to the other two Penicillium antifungal proteins, PAF and PAFB, that are expressed by this biotechnologically important ascomycete. PAFC is secreted into the culture broth and is co-expressed with PAF and PAFB in the exudates of surface cultures. This observation is in line with the suggested role of AMPs in the adaptive response of the host to endogenous and/or environmental stimuli. The in silico structural model predicted five ß-strands stabilized by four intramolecular disulfide bonds in PAFC. The functional characterization of recombinant PAFC provided evidence for a promising new molecule in anti-Candida therapy. The thermotolerant PAFC killed planktonic cells and reduced the metabolic activity of sessile cells in pre-established biofilms of two Candidaalbicans strains, one of which was a fluconazole-resistant clinical isolate showing higher PAFC sensitivity than the fluconazole-sensitive strain. Candidacidal activity was linked to severe cell morphology changes, PAFC internalization, induction of intracellular reactive oxygen species and plasma membrane disintegration. The lack of hemolytic activity further corroborates the potential applicability of PAFC in clinical therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...