Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 240: 113550, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35724620

RESUMO

High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) is a valuable method for composition determination of nanomaterials. However, light elements do not scatter efficiently into the scattering angles employed for HAADF-STEM which hinders the composition determination of material systems containing light elements by HAADF-STEM. This makes the usage of lower scattering angles favourable. Moreover, static atomic displacements (SADs) caused by the small covalent radius of the substituting light elements in semiconductor alloys increase the scattering intensity at low angles. Nevertheless, at low angles, a quantitative match between complementary image simulations and experiments is not straight forward, since e.g. inelastic scattering and correlated phonon movement is often neglected in simulations. In this study, we establish a method to quantify material systems containing light elements at low angles by resolving the remaining sources of discrepancy. An outstanding agreement between simulations and experiments is achieved by using a combination of an in-column energy filter and a fast pixelated detector. By applying this method to GaNxAs1-x quantum wells, a good agreement of the TEM results with results from high-resolution x-ray diffraction is obtained. The method developed enables the nanoscale analysis of functional materials containing light elements, especially in the presence of SADs.

2.
Ultramicroscopy ; 230: 113387, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34619567

RESUMO

Quantitative scanning transmission electron microscopy (STEM) allows composition determination for nanomaterials at an atomic scale. To improve the accuracy of the results obtained, optimized imaging parameters should be chosen for annular dark field imaging. In a simulation study, we investigate the influence of imaging parameters on the accuracy of the composition determination with the example of ternary III-V semiconductors. It is shown that inner and outer detector angles and semi-convergence angle can be optimized, also in dependence on specimen thickness. Both, a minimum sampling of the image and a minimum electron dose are required. These findings are applied experimentally by using a fast pixelated detector to allow free choice of detector angles.

3.
Ultramicroscopy ; 206: 112814, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31310886

RESUMO

Quantitative scanning transmission electron microscopy (STEM) is a powerful tool for the characterization of nano-materials. Absolute composition determination for ternary III-V semiconductors by direct comparison of experiment and simulation is well established. Here, we show a method to determine the composition of quaternary III-V semiconductors with two elements on each sub lattice from the intensities of one STEM image. As an example, this is applied to (GaIn)(AsBi). The feasibility of the method is shown in a simulation study that also explores the influence of detector angles and specimen thickness. Additionally, the method is applied to an experimental STEM image of a (GaIn)(AsBi) quantum well grown by metal organic vapour phase epitaxy. The obtained concentrations are in good agreement with X-ray diffraction and photoluminescence results.

4.
Ultramicroscopy ; 201: 49-57, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30927691

RESUMO

Scanning transmission electron microscopy (STEM) is a suitable method for the quantitative characterization of nanomaterials. For an absolute composition determination on an atomic scale, the thickness of the specimen has to be known locally with high accuracy. Here, we propose a method to determine both thickness and composition of ternary III-V semiconductors locally from one STEM image as shown for the example material systems Ga(AsBi) and (GaIn)As. In a simulation study, the feasibility of the method is proven and the influence of specimen thickness and detector angles used is investigated. An application to an experimental STEM image of a Ga(AsBi) quantum well grown by metal organic vapour phase epitaxy yields an excellent agreement with composition results from high resolution X-ray diffraction.

5.
Ultramicroscopy ; 200: 84-96, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844539

RESUMO

This paper presents a comprehensive investigation of an extended method to determine composition of materials by scanning transmission electron microscopy (STEM) high angle annular darkfield (HAADF) images and using complementary multislice simulations. The main point is to understand the theoretical capabilities of the algorithm and address the intrinsic limitations of using STEM HAADF intensities for composition determination. A special focus is the potential of the method regarding single-atom accuracy. All-important experimental parameters are included into the multislice simulations to ensure the best possible fit between simulation and experiment. To demonstrate the capabilities of the extended method, results for three different technical important semiconductor samples are presented. Overall the method shows a high lateral resolution combined with a high accuracy towards single-atom accuracy.

6.
J Microsc ; 268(3): 259-268, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28960298

RESUMO

The atomic structure of (GaIn)As/Ga(AsSb)/(GaIn)As-'W'-type quantum well heterostructures ('W'-QWHs) is investigated by scanning transmission electron microscopy (STEM). These structures were grown by metal organic vapour phase epitaxy and are built for type-II laser systems in the infrared wavelength regime. For two samples grown at 525°C and 550°C, intensity profiles are extracted from the STEM images for each sublattice separately. These intensity profiles are compared to the one obtained from an image simulation of an ideal 'W'-QWH that is modelled in close agreement with the experiment. From the intensity profiles, the width of the different quantum wells (QWs) can be determined. Additionally, characteristics connected to the growth of the structures, such as segregation coefficients and material homogeneity, are calculated. Finally, composition profiles are derived from the STEM intensity profiles to a first approximation. For these composition profiles, the expected photoluminescence (PL) is computed based using the semiconductor luminescence equations. The PL spectra are then compared to experimental measurements for both samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...