Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Topogr ; 36(5): 644-660, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37382838

RESUMO

Radiologists routinely analyze hippocampal asymmetries in magnetic resonance (MR) images as a biomarker for neurodegenerative conditions like epilepsy and Alzheimer's Disease. However, current clinical tools rely on either subjective evaluations, basic volume measurements, or disease-specific models that fail to capture more complex differences in normal shape. In this paper, we overcome these limitations by introducing NORHA, a novel NORmal Hippocampal Asymmetry deviation index that uses machine learning novelty detection to objectively quantify it from MR scans. NORHA is based on a One-Class Support Vector Machine model learned from a set of morphological features extracted from automatically segmented hippocampi of healthy subjects. Hence, in test time, the model automatically measures how far a new unseen sample falls with respect to the feature space of normal individuals. This avoids biases produced by standard classification models, which require being trained using diseased cases and therefore learning to characterize changes produced only by the ones. We evaluated our new index in multiple clinical use cases using public and private MRI datasets comprising control individuals and subjects with different levels of dementia or epilepsy. The index reported high values for subjects with unilateral atrophies and remained low for controls or individuals with mild or severe symmetric bilateral changes. It also showed high AUC values for discriminating individuals with hippocampal sclerosis, further emphasizing its ability to characterize unilateral abnormalities. Finally, a positive correlation between NORHA and the functional cognitive test CDR-SB was observed, highlighting its promising application as a biomarker for dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores
2.
J Neurol Sci ; 420: 117220, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183776

RESUMO

Single subject VBM (SS-VBM), has been used as an alternative tool to standard VBM for single case studies. However, it has the disadvantage of producing an excessively large number of false positive detections. In this study we propose a machine learning technique widely used for automated data classification, namely Support Vector Machine (SVM), to refine the findings produced by SS-VBM. A controlled set of experiments was conducted to evaluate the proposed approach using three-dimensional T1 MRI scans from control subjects collected from the publicly available IXI dataset. The scans were artificially atrophied at different locations and with different sizes to mimic the behavior of neurological disorders. Results empirically demonstrated that the proposed method is able to significantly reduce the amount of false positive clusters (p < 0.05), with no statistical differences in the true positive findings (p > 0.05). This evidence was observed to be consistent for different atrophied areas and sizes of atrophies. This approach could be potentially be applied to alleviate the intensive manual analysis that radiologists and clinicians have to perform to filter out miss-detections of SS-VBM, increasing its usability for image reading.


Assuntos
Substância Cinzenta , Imageamento por Ressonância Magnética , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/patologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...